Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Surg Res ; 298: 251-259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636181

RESUMO

INTRODUCTION: This study is a retrospective study. This study aims to explore the association between lobectomy in lung cancer patients and subsequent compensatory lung growth (CLG), and to identify factors that may be associated with variations in CLG. METHODS: 207 lung cancer patients who underwent lobectomy at Yunnan Cancer Hospital between January 2020 and December 2020. All patients had stage IA primary lung cancer and were performed by the same surgical team. And computed tomography examinations were performed before and 1 y postoperatively. Based on computed tomography images, the volume of each lung lobe was measured using computer software and manual, the radiological lung weight was calculated. And multiple linear regressions were used to analyze the factors related to the increase in postoperative lung weight. RESULTS: One year after lobectomy, the radiological lung weight increased by an average of 112.4 ± 20.8%. Smoking history, number of resected lung segments, preoperative low attenuation volume, intraoperative arterial oxygen partial pressure/fraction of inspired oxygen ratio and postoperative visual analog scale scores at 48 h were significantly associated with postoperative radiological lung weight gain. CONCLUSIONS: Our results suggest that CLG have occurred after lobectomy in adults. In addition, anesthetists should maintain high arterial oxygen partial pressure/fraction of inspired oxygen ratio during one-lung ventilation and improve acute postoperative pain to benefit CLG.


Assuntos
Neoplasias Pulmonares , Pulmão , Pneumonectomia , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Feminino , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Pulmão/crescimento & desenvolvimento , Idoso , Adulto , Tamanho do Órgão , Período Pós-Operatório
2.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930896

RESUMO

Waste cooking oil's (WCO's) potential as a rejuvenator of aged asphalt has received attention in recent years, with the acid value of WCO affecting its rejuvenation effect. This study explored the rejuvenation effect of WCO with a high acid value on aged asphalt by using molecular dynamics simulation. First, the representative molecules of WCO with a high acid value and asphalt were determined. The rejuvenation effect of WCO on aged asphalt was analyzed by adding different contents of WCO to an aged asphalt model. The effect of WCO on the thermodynamic properties of the aged asphalt was analyzed. The results show that WCO can restore the thermodynamic properties of aged asphalt binder to a certain extent. Regarding the microstructure of rejuvenated asphalt, WCO molecules dispersed around asphaltenes weakened the latter's aggregation and improved the colloidal structure of the aged asphalt. In terms of interface adhesion properties, WCO can improve the adhesion properties between asphalt binder and SiO2, but it has limited influence on water sensitivity. The results allowed us to comprehensively evaluate the rejuvenation effect of WCO with a high acid value on aged asphalt and to explore its rejuvenation mechanism.

3.
J Sci Food Agric ; 104(4): 2398-2405, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996964

RESUMO

BACKGROUND: Yeast is often used to build cell factories to produce various chemicals or nutrient substances, which means the yeast has to encounter stressful environments. Previous research reported that unsaturated fatty acids were closely related to yeast stress resistance. Engineering unsaturated fatty acids may be a viable strategy for enhancing the stress resistance of cells. RESULTS: In this study, two desaturase genes, OLE1 and FAD2 from Z. rouxii, were overexpressed in S. cerevisiae to determine how unsaturated fatty acids affect cellular stress tolerance of cells. After cloning and plasmid recombination, the recombinant S. cerevisiae cells were constructed. Analysis of membrane fatty acid contents revealed that the recombinant S. cerevisiae with overexpression of OLE1 and FAD2 genes contained higher levels of fatty acids C16:1 (2.77 times), C18:1 (1.51 times) and C18:2 (4.15 times) than the wild-type S. cerevisiae pY15TEF1. In addition, recombinant S. cerevisiae cells were more resistant to multiple stresses, and exhibited improved membrane functionality, including membrane fluidity and integrity. CONCLUSION: These findings demonstrated that strengthening the expression of desaturases was beneficial to stress tolerance. Overall, this study may provide a suitable means to build a cell factory of industrial yeast cells with high tolerance during biological manufacturing. © 2023 Society of Chemical Industry.


Assuntos
Ácidos Graxos Dessaturases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo
4.
BMC Plant Biol ; 23(1): 17, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36617566

RESUMO

BACKGROUND: Iris lactea var. chinensis, a perennial herbaceous species, is widely distributed and has good drought tolerance traits. However, there is little information in public databases concerning this herb, so it is difficult to understand the mechanism underlying its drought tolerance. RESULTS: In this study, we used Illumina sequencing technology to conduct an RNA sequencing (RNA-seq) analysis of I. lactea var. chinensis plants under water-stressed conditions and rehydration to explore the potential mechanisms involved in plant drought tolerance. The resulting de novo assembled transcriptome revealed 126,979 unigenes, of which 44,247 were successfully annotated. Among these, 1187 differentially expressed genes (DEGs) were identified from a comparison of the water-stressed treatment and the control (CK) treatment (T/CK); there were 481 upregulated genes and 706 downregulated genes. Additionally, 275 DEGs were identified in the comparison of the rehydration treatment and the water-stressed treatment (R/T). Based on Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) analysis, the expression levels of eight randomly selected unigenes were consistent with the transcriptomic data under water-stressed and rehydration treatment, as well as in the CK. According to Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, proline metabolism-related DEGs, including those involved in the 'proline catabolic process', the 'proline metabolic process', and 'arginine and proline metabolism', may play important roles in plant drought tolerance. Additionally, these DEGs encoded 43 transcription factors (TFs), 46 transporters, and 22 reactive oxygen species (ROS)-scavenging system-related proteins. Biochemical analysis and histochemical detection showed that proline and ROS were accumulated under water-stressed conditions, which is consistent with the result of the transcriptomic analysis. CONCLUSIONS: In summary, our transcriptomic data revealed that the drought tolerance of I. lactea var. chinensis depends on proline metabolism, the action of TFs and transporters, and a strong ROS-scavenging system. The related genes found in this study could help us understand the mechanisms underlying the drought tolerance of I. lactea var. chinensis.


Assuntos
Gênero Iris , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gênero Iris/genética , Gênero Iris/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resistência à Seca , Estresse Fisiológico/genética , Transcriptoma , Perfilação da Expressão Gênica , Desidratação/genética , Sequenciamento de Nucleotídeos em Larga Escala , Água/metabolismo , Regulação da Expressão Gênica de Plantas , Secas
5.
Plant Physiol ; 190(2): 1117-1133, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35876823

RESUMO

In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis). PDRP enzyme activity was undetectable in leaf extracts from PDRP KO lines. Likewise, PPDK phosphorylated at the PDRP-regulatory Thr residue was immunologically undetectable in leaf extracts. PPDK enzyme activity in rapid leaf extracts was constitutively high in the PDRP KO lines, irrespective of light or dark pretreatment of leaves. Gas exchange analysis of net CO2 assimilation revealed PDRP KO leaves had markedly slower light induction kinetics when leaves transition from dark to high-light or low-light to high-light. In the initial 30 min of the light induction phase, KO leaves had an ∼15% lower net CO2 assimilation rate versus the wild-type (WT). Despite the impaired slower induction kinetics, we found growth and vigor of the KO lines to be visibly indistinguishable from the WT when grown in normal air and under standard growth chamber conditions. However, the PDRP KO plants grown under a fluctuating light regime exhibited a gradual multi-day decline in Fv/Fm, indicative of progressive photosystem II damage due to the absence of PDRP. Collectively, our results demonstrate that one of PDRP's functions in C4 photosynthesis is to ensure optimal photosynthetic light induction kinetics during dynamic changes in incident light.


Assuntos
Piruvato Ortofosfato Diquinase , Setaria (Planta) , Dióxido de Carbono/metabolismo , NADP/metabolismo , Fosfatos/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Extratos Vegetais/metabolismo , Plantas/metabolismo , Piruvato Ortofosfato Diquinase/química , Ácido Pirúvico/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
6.
Mediators Inflamm ; 2023: 7750134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064501

RESUMO

Objective: To explore the molecular mechanism of sevoflurane-induced neurotoxicity and to determine whether lncRNA HOXA11-AS affects sevoflurane-induced neuronal apoptosis and inflammation by regulating miR-98-5p/EphA4. Methods: Morris water maze (MWM) test was used to detect the learning and memory ability of rats, HE staining was used to observe hippocampal pathology, TUNEL staining was used to detect the level of neuronal apoptosis, and RT-qPCR was used to detect the expression of HOXA11-AS, miR-98-5p, IL-6, IL-1ß, and TNF-α. At the same time, the contents of IL-6, IL-1ß, and TNF-α in serum were detected by ELISA. The expressions of apoptosis-related proteins EphA4, Bax, Cleaved caspase 3, and Bcl-2 were detected by Western blot. The dual-luciferase gene reporter verified the targeting relationship between HOXA11-AS and miR-98-5p and the targeting relationship between miR-98-5p and EphA4. Results: The expression of HOXA11-AS was observed in sevoflurane-treated rats or cells and promoted neuronal apoptosis and inflammation. HOXA11-AS was knocked out alone, or miR-98-5p was overexpressed which attenuates neuronal apoptosis and inflammatory inflammation after sevoflurane treatment. Furthermore, knockdown of HOXA11-AS alone was partially restored by knockdown of miR-98-5p or overexpression of EphA4. Conclusion: Inhibition of lncRNA HOXA11-AS attenuates sevoflurane-induced neuronal apoptosis and inflammatory responses via miR-98-5p/EphA4.


Assuntos
MicroRNAs , RNA Longo não Codificante , Receptor EphA4 , Sevoflurano , Animais , Ratos , Apoptose , Inflamação , Interleucina-6/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sevoflurano/toxicidade , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor EphA4/genética , Receptor EphA4/metabolismo
7.
Small ; 17(52): e2102392, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636135

RESUMO

The unique structural advantage and physicochemical properties render some 2D materials emerging platforms for intracellular bioimaging, biosensing, or disease theranostics. Despite recent advances in this field, one major challenge lies in bypassing the endocytic uptake barrier to allow internalization of very large 2D materials that have longer retention time in cells, and hence greater potency as intracellular functional platforms than small, endocytosable counterparts. Here, an engineered cucurbit[6]uril carrying at its periphery multiple spiropyran pendants that readily translocates into cytosol, and then polymerizes laterally and non-covalently in a controlled manner, enabling direct generation of 2D materials inside living cells, is reported. The resultant 2D materials are single-monomer-thick and can in situ grow up to 0.8-1.2 µm in lateral size, experimentally proved too large to be endocytosed from outside the cells even after surface engineered with biorecognition entities. A Förster resonance energy transfer assay is further devised for real-time visualization of the polymerization dynamics in vivo, clearly demonstrating the rationale in this study. With the otherwise non-endocytosable large 2D materials gaining access to cytosol, potent intracellular signaling or theranostic platform that surpasses the intrinsic performance limit of conventional small counterparts are in sight.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Benzopiranos , Indóis , Nitrocompostos
8.
Macromol Rapid Commun ; 42(19): e2100318, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347335

RESUMO

Owing to deep activation in biotissues and enhanced targeting efficiency, developing photoresponsive polymer-upconversion nanoparticles (PP-UCNPs) nanovectors has witnessed rapid growth in the past decade. However, up to date, all developed nanovectors require high-order photon processes to initiate the release of cargos. The photodamage caused by high-power near-infrared laser light may be a critical obstacle to their clinical application. Here, for the first time, by leveraging absorption-emission spectral matching between donor-acceptor Stenhouse adducts (DASA) PP and UCNPs (λex , 808 nm) in the green region (≈530 nm), the designed nanovector is capable of releasing cargos at a low-power 808 nm excitation (0.2 W). Considering the high molar absorptivity, biobenign, and synthetic tunability of DASA, DASA PP can be utilized as an up-and-coming candidate to design and synthesize the next generation of upconversion nanovectors without photodamage.


Assuntos
Nanopartículas , Polímeros , Raios Infravermelhos
9.
Langmuir ; 36(45): 13469-13476, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147040

RESUMO

The booming of host-guest assembly-based supramolecular chemistry provides abundant ways to construct functional systems and materials. Attracted by the important application prospect of white light emission and aggregation-induced emission (AIE) materials, herein, we report an efficient way for fabricating metal-free white light-emitting AIE materials through the supramolecular assembly of simple organic compounds: methoxyl pillar[5]arene (MP5) and tri-(pyridine-4-ylamido)benzene (TAP). By host-guest assembly, MP5 and TAP formed a supramolecular polymer (MP5-T); meanwhile, the MP5-T xerogel powder emitted white light at CIE coordinates (0.29 and 0.29). The supramolecular assembly and white light-emitting mechanisms were carefully investigated by experiments as well as quantum chemical calculations including density functional theory (DFT), reduced density gradient, electrostatic surface potential, independent gradient model, and frontier molecular orbital (highest-occupied molecular orbital-lowest-unoccupied molecular orbital) analyses. Interestingly, according to the experiments and calculations, the supramolecular assembly is critical in the white light-emitting phenomenon. Moreover, in this work, the quantum chemical calculations could not only support experimental phenomena but also provide deep understanding and visualized presentation of the assembly and emission mechanism. In addition, the obtained MP5-T solid powder could serve as a novel and easy means to make material for white light-emitting devices.

10.
Soft Matter ; 16(24): 5734-5739, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32525181

RESUMO

Stimuli-responsive optical materials attract lots of attention due to their broad applications. Herein, a novel smart stimuli-responsive supramolecular polymer was successfully constructed using a simple tripodal quaternary ammonium-based gelator (TH). The TH self-assembles into a supramolecular polymer hydrogel (TH-G) and shows aggregation-induced emission (AIE) properties. Interestingly, the transparency and fluorescence of the TH-G xerogel film (TH-GF) could be reversibly regulated by use of triethylamine (TEA) and hydrochloric acid (HCl) vapor. When alternately fumed with TEA and HCl vapor, the optical transmittance of the TH-GF was changed from 8.9% to 92.7%. Meanwhile, the fluorescence of the TH-G shows an "ON/OFF" switch. The reversible switching of the transparency and the fluorescence of the TH-GF is attributed to the assembly and disassembly of the supramolecular polymer TH-G. Based on these stimuli-response properties, the TH-GF could act as an optical material and shows potential applications as smart windows or fluorescent display material controlled by TEA and HCl vapor.

11.
Phys Chem Chem Phys ; 22(46): 26995-27001, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33210673

RESUMO

In this work, we systematically study the electronic band structures of fluorine-passivated graphdiyne nanoribbons (F_GDYNRs) doped with BN pairs using first-principles density functional theory calculations. The calculation results show that that fluorine passivation and heteroatom doping play different roles in modifying the electronic structures of F_GDYNRs. The former helps lower the position of the valence band of the graphdiyne nanoribbons (GDYNRs) while the latter significantly opens the band gap of GDYNRs. The doped F_GDYNRs have direct band gaps of 1.8-2.9 eV, and their valence and conduction bands perfectly straddle both the oxidation and reduction potential of water. This work demonstrates that F_GDYNRs, via doping with BN pairs, possess high catalytic activity for water splitting, which will shed light on the design of metal-free low-dimensional photocatalysts.

12.
Soft Matter ; 15(46): 9547-9552, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31714557

RESUMO

A bi-component supramolecular gel (RQ) was successfully constructed by the assembly of the gelators 4-aminophenyl functionalized naphthalimide derivative (R) and tri-(pyridine-4-yl)-functionalized trimesic amide (Q) in DMSO-H2O (6.1 : 3.9, v/v) binary solution. The gel RQ exhibits excellent self-healing capacity. Interestingly, the RQ could fluorescently detect and reversibly remove Hg2+ from water through cation-π interactions with high selectivity, efficient adsorption and quick response. The limit of lowest detection (LOD) of the RQ for Hg2+ is 4.52 × 10-8 M and the separation ratio is 91.14%. Moreover, the RQ could be efficiently recycled and regenerated with little loss via a simple treatment by I-. Notably, thin films based on RQ and RQ + Hg2+ were prepared, which could serve as convenient and efficient test tools for the detection of Hg2+ and I-, respectively. This work provided an efficient method and novel supramolecular gel material for the separation and detection of Hg2+.

13.
Bioconjug Chem ; 29(1): 74-82, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29232112

RESUMO

Bacterial resistance is emerging as a global threat, stemming partially from continuous exposure of pathogens to antibiotics of sublethal concentrations. Thus, novel molecular approaches capable of inactivating antibiotics, which prevent their final build-up in the environment, are highly desirable. Here, we report a proof-of-principle demonstration of a mechanically new strategy for switchable control of antibiotic activity, which regulates drug uptake across the outer membrane of Gram-negative bacteria by externally triggered shape shifting of a short, covalently attached "tail". The rationale behind this strategy is grounded in the size-selectivity of porin channels exploited by a large proportion of antibiotics for accessing intracellular targets, thus representing a general approach to control antibiotic availability in the environment which alleviates undue selection pressure for resistance.


Assuntos
Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Ciprofloxacina/análogos & derivados , Ciprofloxacina/metabolismo , Bactérias Gram-Negativas/metabolismo , Porinas/metabolismo , Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Resinas Acrílicas/farmacologia , Antibacterianos/farmacologia , Transporte Biológico , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos
14.
Des Monomers Polym ; 20(1): 496-504, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29491821

RESUMO

A series of novel poly(arylene ether)s with crosslinked groups and different azobenzene chromophores contents (azo-CPAEs: PAE-allyl20%-azo20%, PAE-allyl20%-azo40%, PAE-allyl20%-azo60%) were synthesized from a new bisfluoro monomer, (2,6-difluorophenyl)-(4-hydroxyphenyl)methanone. Their chemical structures were characterized by means of UV-vis and FI-IR. The thermal properties of the polymers were investigated by TGA and DSC, indicating the polymers had high glass transition temperatures (Tg > 147 °C) and good thermal stability (Td5 > 360 °C) even when the contents of azobenzene chromophores was high to 60%. And the influence of thermal crosslinking on the performance of PAE-allyl20%-azo20%, a typical one of the series, was investigated. Tg of PAE-allyl20%-azo20% increased with the increase of heating time when heat-treated at 250 °C for 20, 40 and 60 min, indicating the crosslink degree of the polymer increased. After heat-treated for 60 min, Tg of PAE-allyl20%-azo20% increased to 175 °C from 147 °C before thermal crosslinking. Upon irradiation with a 532 nm neodymium doped yttrium aluminum garnet (Nd:YAG) laser beam, the remnant value of the polymer PAE-allyl20%-azo20% before and after the thermal crosslinking were 81 and 96%, respectively, meaning that the PAE-allyl20%-azo20% after thermal crosslink showed more stable photoinduced alignment than that before thermal crosslinking.

15.
Regul Toxicol Pharmacol ; 81: 223-232, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27612992

RESUMO

The objective of this study was to compare premature ovarian failure animal models established by several different source of inducers. Female ICR mice, KM mice, and SD rats were treated by cyclophosphamide at 120 mg/kg, busulfan at 12 mg/kg, cisplatin at 3 or 4 mg/kg, 4-vinylcyclohexene diepoxide at 160 mg/kg, 35% galactose food pellet, and tripterygium glycosides at 50 mg/kg, respectively. Parameters were analyzed by body weight, serum concentration level of related hormones, ovarian and uterine pathological examination. The results indicated the body weight of mice increased very slowly following single dose of cyclophosphamide (p < 0.05) with damaged ovary; repeated doses of cisplatin could induce body weight significantly decreased (p < 0.01) with a rising trend of serum LH concentration, declining tendency of serum E2 concentration and injured ovary and uterus; 4-vinylcyclohexene diepoxide also hindered the mice growing (p < 0.05) with damaged ovary and uterus; the body weight of mice feed by 35% galactose food pellet increased slowly (p < 0.05) with dramatically higher serum concentration level of galactose, albumin, and total protein (p < 0.001) and injured ovary. Busulfan and tripterygium glycosides did not present obvious evidences. In conclusion, the inducers presented their respective features in such animal models and should be appropriately applied in preventive methods.


Assuntos
Modelos Animais de Doenças , Ovário/efeitos dos fármacos , Ovário/patologia , Insuficiência Ovariana Primária/induzido quimicamente , Animais , Bussulfano/administração & dosagem , Bussulfano/farmacologia , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Cicloexenos/administração & dosagem , Cicloexenos/farmacologia , Ciclofosfamida/administração & dosagem , Ciclofosfamida/farmacologia , Relação Dose-Resposta a Droga , Feminino , Galactose/administração & dosagem , Galactose/farmacologia , Glicosídeos/administração & dosagem , Glicosídeos/farmacologia , Camundongos , Camundongos Endogâmicos , Insuficiência Ovariana Primária/patologia , Insuficiência Ovariana Primária/fisiopatologia , Ratos , Ratos Sprague-Dawley , Tripterygium/química , Compostos de Vinila/administração & dosagem , Compostos de Vinila/farmacologia
16.
ScientificWorldJournal ; 2014: 189168, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133205

RESUMO

BACKGROUND: The mechanisms by which plasminogen activator inhibitor-1 (PAI-1) regulates inflammation, especially in acute respiratory distress syndrome (ARDS), are largely unknown. OBJECTIVE: To assess the relationship between PAI-1 and autophagy in inflammatory reactions induced by LPS in rat NR8383 cells. METHODS: ELISA was used to assess the amounts of TNF-α, IL-1ß, and PAI-1 in cell culture supernatants; TLR4, MyD88, PAI-1, LC3, Beclin1, and mTOR protein and mRNA levels were determined by western blot and quantitative RT-PCR, respectively; western blot was used to determine NF-κB protein levels. To further evaluate the role of PAI-1, the PAI-1 gene was downregulated and overexpressed using the siRNA transfection technology and the pCDH-PAI-1, respectively. Finally, the GFP Positive Expression Rate Method was used to determine the rate of GFP-LC3 positive NR8383 cells. RESULTS: In LPS-induced NR8383 cells, TNF-α, IL-1ß, and PAI-1 expression levels increased remarkably. Upon PAI-1 knockdown, TNF-α, IL-1ß, PAI-1, TLR4, MyD88, NF-κB, LC3, and Beclin1 levels were decreased, while mTOR increased. Conversely, overexpression of PAI-1 resulted in increased amounts of TNF-α, IL-1ß, PAI-1, TLR4, MyD88, NF-κB, LC3, and Beclin1. However, no significant change was observed in mTOR expression. CONCLUSIONS: In NR8383 cells, PAI-1 contributes in the regulation of LPS-induced inflammation, likely by promoting autophagy.


Assuntos
Autofagia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Linhagem Celular , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Polymers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337258

RESUMO

In recent years, polyurethane has drawn great attention because of its many advantages in physical and chemical performance. In this work, firstly, polyurethane was impregnated in a non-woven fabric (NWF). Then, polyurethane-impregnated NWF was coagulated utilizing a wet phase inversion. Finally, after alkali treatment, microfiber non-woven fabrics with a porous polyurethane matrix (PNWF) were fabricated and used as substrates. SnIn4S8 (SIS) prepared by a microwave-assisted method was used as a photocatalyst and a novel SIS/PNWF substrate with multiple uses and highly efficient catalytic degradation ability under visible light was successfully fabricated. The surface morphology, chemical and crystal structures, optical performance, and wettability of SIS/PNWF substrates were observed. Subsequently, the photocatalytic performance of SIS/PNWF substrates was investigated by the decomposition of rhodamine B (RhB) under visible light irradiation. Compared with SIS/PNWF-2% (2%, the weight ratio of SIS and PNWF, same below), SIS/PNWF-5% as well as SIS/PNWF-15%, SIS/PNWF-10% substrates exhibited superior photocatalytic efficiency of 97% in 2 h. This may be due to the superior photocatalytic performance of SIS and the inherent hierarchical porous structure of PNWF substrates. Additionally, the hydrophobicity of SIS/PNWF substrates can enable them to float on the solution and further be applied on an open-water surface. Furthermore, tensile strength and recycle experiments demonstrated that SIS/PNWF substrates possessed superior mechanical strength and excellent recycle stability. This work provides a facile and efficient pathway to prepare SIS/PNWF substrates for the degradation of organic pollutants with enhanced catalytic efficiency.

18.
Luminescence ; 28(3): 259-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22555860

RESUMO

Electrogenerated chemiluminescence (ECL) of thiol-capped CdTe quantum dots (QDs) in aqueous solution was greatly enhanced by PDDA-protected graphene (P-GR) film that were used for the sensitive detection of H2 O2 . When the potential was cycled between 0 and -2.3 V, two ECL peaks were observed at -1.1 (ECL-1) and -1.4 V (ECL-2) in pH 11.0, 0.1 M phosphate buffer solution (PBS), respectively. The electron-transfer reaction between individual electrochemically-reduced CdTe nanocrystal species and oxidant coreactants (H2 O2 or reduced dissolved oxygen) led to the production of ECL-1. While mass nanocrystals packed densely in the film were reduced electrochemically, assembly of reduced nanocrystal species reacted with coreactants to produce an ECL-2 signal. ECL-1 showed higher sensitivity for the detection of H2 O2 concentrations than that of ECL-2. Further, P-GR film not only enhanced ECL intensity of CdTe QDs but also decreased its onset potential. Thus, a novel CdTe QDs ECL sensor was developed for sensing H2O2. Light intensity was linearly proportional to the concentration of H2 O2 between 1.0 × 10(-5) and 2.0 x 10(-7) mol L(-1) with a detection limit of 9.8 x 10(-8) mol L(-1). The P-GR thin-film modified glassy carbon electrode (GCE) displayed acceptable reproducibility and long-term stability.


Assuntos
Grafite/química , Peróxido de Hidrogênio/análise , Medições Luminescentes/métodos , Pontos Quânticos/química , Cádmio/química , Limite de Detecção , Luminescência , Medições Luminescentes/instrumentação , Reprodutibilidade dos Testes , Telúrio/química
19.
Luminescence ; 28(4): 530-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418144

RESUMO

We report a facile one-pot sonochemical approach to preparing highly water-soluble Ag nanoclusters (NCs) using bovine serum albumin as a stabilizing agent and reducing agent in aqueous solution. Intensive electrogenerated chemiluminescence (ECL) was observed from the as-prepared Ag (NCs) and successfully applied for the ECL detection of dopamine with high sensitivity and a wide detection range. A possible ECL mechanism is proposed for the preparation of Ag NCs. With this method, the dopamine concentration was determined in the range of 8.3 × 10(-9) to 8.3 × 10(-7) mol/L without the obvious interference of uric acid, ascorbic acid and some other neurotransmitters, such as serotonin, epinephrine and norepinephrine, and the detection limit was 9.2 × 10(-10) mol/L at a signal/noise ratio of 3.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas , Luminescência , Nanopartículas Metálicas/química , Prata/química , Sonicação , Medições Luminescentes , Solubilidade , Água/química
20.
ACS Nano ; 17(3): 3055-3063, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688625

RESUMO

Using a photochemically isomerizable cucurbit[6]uril derivative as a building block, we succeeded in generating a large number of oversized 2D materials within the cytosol of a living cell via controlled self-assembly. Fluorescence recovery after a photobleaching assay indicated that the resulting 2D material pieces posed discernible hindrance to not only diffusive spreading but also motor-driven motion of intracellular components in the cytosol, which eventually induced apoptotic cell death. Such behavior was seldom observed in previous 2D material-bearing cells prepared by endocytosis, as the total lateral size constituted by the endocytosed 2D materials per cell failed to exceed a threshold level, leading to a tortuosity of transport path inadequate to impede cytosolic transport in an appreciable manner. By varying the initial concentration of the building block, the existence of such a threshold was experimentally demonstrated from the relationship between the flow cytometry side scatter of the treated cells and corresponding cell viability. With the otherwise well-regulated cytosolic transport dynamics of living cells being physically altered, therapeutics with a new mechanism of action that counteracts drug resistance or intracellular platforms that advance our understanding of subcellular pathology of certain intractable diseases are in sight.


Assuntos
Apoptose , Endocitose , Transporte Biológico , Citosol/metabolismo , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA