Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 43(5): 754-779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287189

RESUMO

Tank-binding kinase 1 (TBK1) is a Ser/Thr kinase that is involved in many intracellular processes, such as innate immunity, cell cycle, and apoptosis. TBK1 is also important for phosphorylating the autophagy adaptors that mediate the selective autophagic removal of damaged mitochondria. However, the mechanism by which PINK1-Parkin-mediated mitophagy activates TBK1 remains largely unknown. Here, we show that the autophagy adaptor optineurin (OPTN) provides a unique platform for TBK1 activation. Both the OPTN-ubiquitin and the OPTN-pre-autophagosomal structure (PAS) interaction axes facilitate assembly of the OPTN-TBK1 complex at a contact sites between damaged mitochondria and the autophagosome formation sites. At this assembly point, a positive feedback loop for TBK1 activation is initiated that accelerates hetero-autophosphorylation of the protein. Expression of monobodies engineered here to bind OPTN impaired OPTN accumulation at contact sites, as well as the subsequent activation of TBK1, thereby inhibiting mitochondrial degradation. Taken together, these data show that a positive and reciprocal relationship between OPTN and TBK1 initiates autophagosome biogenesis on damaged mitochondria.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Membrana Transportadoras , Membranas Mitocondriais , Mitofagia , Humanos , Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
J Biol Chem ; 300(7): 107476, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879013

RESUMO

DJ-1, a causative gene for hereditary recessive Parkinsonism, is evolutionarily conserved across eukaryotes and prokaryotes. Structural analyses of DJ-1 and its homologs suggested the 106th Cys is a nucleophilic cysteine functioning as the catalytic center of hydratase or hydrolase activity. Indeed, DJ-1 and its homologs can convert highly electrophilic α-oxoaldehydes such as methylglyoxal into α-hydroxy acids as hydratase in vitro, and oxidation-dependent ester hydrolase (esterase) activity has also been reported for DJ-1. The mechanism underlying such plural activities, however, has not been fully characterized. To address this knowledge gap, we conducted a series of biochemical assays assessing the enzymatic activity of DJ-1 and its homologs. We found no evidence for esterase activity in any of the Escherichia coli DJ-1 homologs. Furthermore, contrary to previous reports, we found that oxidation inactivated rather than facilitated DJ-1 esterase activity. The E. coli DJ-1 homolog HchA possesses phenylglyoxalase and methylglyoxalase activities but lacks esterase activity. Since evolutionary trace analysis identified the 186th H as a candidate residue involved in functional differentiation between HchA and DJ-1, we focused on H186 of HchA and found that an esterase activity was acquired by H186A mutation. Introduction of reverse mutations into the equivalent position in DJ-1 (A107H) selectively eliminated its esterase activity without compromising α-oxoaldehyde hydratase activity. The obtained results suggest that differences in the amino acid sequences near the active site contributed to acquisition of esterase activity in vitro and provide an important clue to the origin and significance of DJ-1 esterase activity.

3.
Plant Cell ; 34(7): 2652-2670, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441691

RESUMO

Flower opening is important for successful pollination in many plant species, and some species repeatedly open and close their flowers. This is thought to be due to turgor pressure changes caused by water influx/efflux, which depends on osmotic oscillations in the cells. In some ornamental plants, water-transporting aquaporins, also known as plasma membrane intrinsic proteins (PIPs), may play an important role in flower opening. However, the molecular mechanism(s) involved in corolla movement are largely unknown. Gentian (Gentiana spp.) flowers undergo reversible movement in response to temperature and light stimuli; using gentian as a model, we showed that the Gentiana scabra aquaporins GsPIP2;2 and GsPIP2;7 regulate repeated flower opening. In particular, phosphorylation of a C-terminal serine residue of GsPIP2;2 is important for its transport activity and relates closely to the flower re-opening rate. Furthermore, GsPIP2;2 is phosphorylated and activated by the calcium (Ca2+)-dependent protein kinase GsCPK16, which is activated by elevated cytosolic Ca2+ levels in response to temperature and light stimuli. We propose that GsCPK16-dependent phosphorylation and activation of GsPIP2;2 regulate gentian flower re-opening, with stimulus-induced Ca2+ signals acting as triggers.


Assuntos
Aquaporinas , Gentiana , Aquaporinas/genética , Aquaporinas/metabolismo , Cálcio/metabolismo , Flores/genética , Flores/metabolismo , Gentiana/metabolismo , Proteínas Quinases/metabolismo , Água/metabolismo
4.
New Phytol ; 240(3): 1177-1188, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37606277

RESUMO

Genetic engineering of flower color provides biotechnological products such as blue carnations or roses by accumulating delphinidin-based anthocyanins not naturally existing in these plant species. Betalains are another class of pigments that in plants are only synthesized in the order Caryophyllales. Although they have been engineered in several plant species, especially red-violet betacyanins, the yellow betaxanthins have yet to be engineered in ornamental plants. We attempted to produce yellow-flowered gentians by genetic engineering of betaxanthin pigments. First, white-flowered gentian lines were produced by knocking out the dihydroflavonol 4-reductase (DFR) gene using CRISPR/Cas9-mediated genome editing. Beta vulgaris BvCYP76AD6 and Mirabilis jalapa MjDOD, driven by gentian petal-specific promoters, flavonoid 3',5'-hydroxylase (F3'5'H) and anthocyanin 5,3'-aromatic acyltransferase (AT), respectively, were transformed into the above DFR-knockout white-flowered line; the resultant gentian plants had vivid yellow flowers. Expression analysis and pigment analysis revealed petal-specific expression and accumulation of seven known betaxanthins in their petals to c. 0.06-0.08 µmol g FW-1 . Genetic engineering of vivid yellow-flowered plants can be achieved by combining genome editing and a suitable expression of betaxanthin-biosynthetic genes in ornamental plants.

5.
Reprod Biol Endocrinol ; 21(1): 29, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944952

RESUMO

BACKGROUND: Granulocyte colony-stimulating factor (G-CSF) administration increased ovarian preantral follicles and anti-Müllerian hormone (AMH) in animal models with diminished ovarian reserve. We investigated whether G-CSF priming before treatment with assisted reproductive technology (ART) improved embryo development and pregnancy rate while increasing serum AMH in patients with poor ovarian reserve. METHODS: In this prospective randomized open-label controlled trial, 100 patients 20 to 42 years old with AMH below 2 ng/mL were randomized to priming or control groups (50 patients each). None had over 1 ART failure, day-3 follicle-stimulating hormone (FSH) above 30 IU/L, uterine anomalies, or a partner with azoospermia. All patients initially underwent conventional infertility treatment for 2 consecutive cycles in which the priming group but not controls received a subcutaneous G-CSF priming injection during the early luteal phase. Each group then underwent 1 cycle of in vitro fertilization/intracytoplasmic sperm injection and fresh embryo transfer (IVF/ICSI-fresh ET), followed by cryopreserved ET if needed until live birth or embryo depletion. AMH was measured before and after priming. RESULTS: Fertilization rate, embryonic development, and implantation rate by fresh ET were significantly improved by priming. Clinical and ongoing pregnancy rates by IVF/ICSI-fresh ET were significantly higher with priming (30% and 26% in 47 ART patients; 3 delivered with conventional treatment) than in controls (12% and 10% in 49 ART patients; 1 dropped out). With priming, significantly more patients achieved cryopreservation of redundant blastocysts. The cumulative live birth rate was 32% in 50 patients with priming, significantly higher than 14% in 49 controls (relative risk, 2.8; 95% confidence interval, 1.04-7.7). Infants derived from priming had no congenital anomalies, while infant weights, birth weeks, and Apgar scores were similar between groups. Among 4 variables (age, day-3 FSH, AMH, and priming), logistic regression significantly associated age and priming with cumulative live birth. Priming significantly increased serum AMH. No adverse effects of priming were observed. CONCLUSION: G-CSF priming improved embryonic development and pregnancy rate during ART treatment and increased AMH in patients with poor ovarian reserve. Enhanced preantral follicle growth likely was responsible. TRIAL REGISTRATION: UMIN registration in Japan (UMIN000013956) on May 14, 2014.  https://www.umin.ac.jp/ctr/index.htm .


Assuntos
Fertilização in vitro , Fator Estimulador de Colônias de Granulócitos , Reserva Ovariana , Feminino , Humanos , Gravidez , Hormônio Antimülleriano , Fertilização in vitro/métodos , Hormônio Foliculoestimulante Humano , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Nascido Vivo , Indução da Ovulação , Taxa de Gravidez , Estudos Prospectivos
6.
Plant J ; 107(6): 1711-1723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245606

RESUMO

Cultivated Japanese gentians traditionally produce vivid blue flowers because of the accumulation of delphinidin-based polyacylated anthocyanins. However, recent breeding programs developed several red-flowered cultivars, but the underlying mechanism for this red coloration was unknown. Thus, we characterized the pigments responsible for the red coloration in these cultivars. A high-performance liquid chromatography with photodiode array analysis revealed the presence of phenolic compounds, including flavones and xanthones, as well as the accumulation of colored cyanidin-based anthocyanins. The chemical structures of two xanthone compounds contributing to the coloration of red-flowered gentian petals were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds were identified as norathyriol 6-O-glucoside (i.e., tripteroside designated as Xt1) and a previously unreported norathyriol-6-O-(6'-O-malonyl)-glucoside (designated Xt2). The copigmentation effects of these compounds on cyanidin 3-O-glucoside were detected in vitro. Additionally, an RNA sequencing analysis was performed to identify the cDNAs encoding the enzymes involved in the biosynthesis of these xanthones. Recombinant proteins encoded by the candidate genes were produced in a wheat germ cell-free protein expression system and assayed. We determined that a UDP-glucose-dependent glucosyltransferase (StrGT9) catalyzes the transfer of a glucose moiety to norathyriol, a xanthone aglycone, to produce Xt1, which is converted to Xt2 by a malonyltransferase (StrAT2). An analysis of the progeny lines suggested that the accumulation of Xt2 contributes to the vivid red coloration of gentian flowers. Our data indicate that StrGT9 and StrAT2 help mediate xanthone biosynthesis and contribute to the coloration of red-flowered gentians via copigmentation effects.


Assuntos
Flores/fisiologia , Gentiana/fisiologia , Pigmentação/genética , Proteínas de Plantas/genética , Xantonas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Cromatografia Líquida de Alta Pressão , Flores/genética , Gentiana/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Estrutura Molecular , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Xantenos/metabolismo , Xantonas/química , Xantonas/isolamento & purificação
7.
Reprod Biol Endocrinol ; 19(1): 149, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579763

RESUMO

BACKGROUND: Advanced glycation end-products (AGE), which accumulate with insulin resistance and aging, impair folliculogenesis and may decrease endometrial receptivity. Hishi (Trapa bispinosa Roxb.) extract, a safe herbal medicine, strongly inhibits AGE formation in vitro. We determined whether Hishi lowers AGE and increases live births in older assisted reproductive technology (ART) patients. METHODS: This prospective randomized open-label controlled trial included 64 patients 38 to 42 years old undergoing ART with or without Hishi extract between June 11, 2015 and July 12, 2019. None had over 2 ART failures, diabetes, uterine anomalies, or exhausted ovarian reserve. After allocation, the Hishi group received Hishi extract (100 mg/day) until late pregnancy or failure. The control group received no extract. Both groups underwent 1 cycle of conventional infertility treatment; 1 long-protocol cycle of ovarian stimulation, oocyte retrieval, in vitro fertilization/intracytoplasmic sperm injection, and fresh embryo transfer (ET); and, if needed, cryopreserved ET until live birth or embryo depletion. Serum AGE were measured before and during ART, as were AGE in follicular fluid (FF). RESULTS: Cumulative live birth rate among 32 Hishi patients was 47%, significantly higher than 16% among 31 controls (p<0.01; RR, 4.6; 95% CI, 1.4 - 15.0; 1 control dropped out). Live birth rate per ET, including fresh and cryopreserved, was significantly higher with Hishi (28% in 47 ET vs. 10% in 49 ET; p<0.05; RR, 3.4; 95% CI, 1.1-10.4). Among variables including age, day-3 FSH, anti-Müllerian hormone, and Hishi, logistic regression identified only Hishi as significantly associated with increased cumulative live birth (p<0.05; OR, 5.1; 95% CI, 1.4 - 18.3). Hishi significantly enhanced oocyte developmental potential, improved endometrial receptivity in natural cycles, and decreased AGE in serum and FF. Larger serum AGE decreases with Hishi were associated with more oocytes becoming day-2 embryos. CONCLUSIONS: Hishi decreased AGE in serum and FF and improved oocyte developmental potential and endometrial receptivity, increasing live births in older patients. Treatment of infertility by AGE reduction represents a new addition to infertility treatment. Therapeutic trials of Hishi for other AGE-associated diseases might be considered. TRIAL REGISTRATION: UMIN registration in Japan ( UMIN000017758 ) on June 1, 2015. https://www.umin.ac.jp/ctr/index.htm.


Assuntos
Produtos Finais de Glicação Avançada , Nascido Vivo , Lythraceae , Extratos Vegetais , Técnicas de Reprodução Assistida , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Terapia Combinada , Regulação para Baixo/efeitos dos fármacos , Produtos Finais de Glicação Avançada/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Japão/epidemiologia , Nascido Vivo/epidemiologia , Idade Materna , Medicina Tradicional do Leste Asiático , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Resultado da Gravidez/epidemiologia , Taxa de Gravidez , Técnicas de Reprodução Assistida/estatística & dados numéricos , Resultado do Tratamento , Lythraceae/química
8.
BMC Plant Biol ; 20(1): 370, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762648

RESUMO

BACKGROUND: The blue pigmentation of Japanese gentian flowers is due to a polyacylated anthocyanin, gentiodelphin, and all associated biosynthesis genes and several regulatory genes have been cloned and characterized. However, the final step involving the accumulation of anthocyanins in petal vacuoles remains unclear. We cloned and analyzed the glutathione S-transferases (GSTs) in Japanese gentian that are known to be involved in anthocyanin transport in other plant species. RESULTS: We cloned GST1, which is expressed in gentian flower petals. Additionally, this gene belongs to the Phi-type GST clade related to anthocyanin biosynthesis. We used the CRISPR/Cas9-mediated genome editing system to generate loss-of-function GST1 alleles. The edited alleles were confirmed by Sanger and next-generation sequencing analyses. The GST1 genome-edited lines exhibited two types of mutant flower phenotypes, severe (almost white) and mild (pale blue). The phenotypes were associated with decreased anthocyanin accumulation in flower petals. In the GST1 genome-edited lines, sugar-induced stress conditions inhibited the accumulation of anthocyanins in stems and leaves, suggestvhing that GST1 is necessary for stress-related anthocyanin accumulation in organs other than flowers. These observations clearly demonstrate that GST1 is the gene responsible for anthocyanin transport in Japanese gentian, and is necessary for the accumulation of gentiodelphin in flowers. CONCLUSIONS: In this study, an anthocyanin-related GST gene in Japanese gentian was functionally characterized. Unlike other biosynthesis genes, the functions of GST genes are difficult to examine in in vitro studies. Thus, the genome-editing strategy described herein may be useful for in vivo investigations of the roles of transport-related genes in gentian plants.


Assuntos
Antocianinas/metabolismo , Sistemas CRISPR-Cas , Gentiana/enzimologia , Gentiana/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/metabolismo , Antocianinas/química , Transporte Biológico , Sistemas CRISPR-Cas/genética , Clonagem Molecular , Flavonoides/biossíntese , Flavonoides/genética , Flores/metabolismo , Edição de Genes , Genes de Plantas , Teste de Complementação Genética , Glutationa Transferase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
9.
BMC Plant Biol ; 18(1): 331, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518324

RESUMO

BACKGROUND: CRISPR/Cas9 technology is one of the most powerful and useful tools for genome editing in various living organisms. In higher plants, the system has been widely exploited not only for basic research, such as gene functional analysis, but also for applied research such as crop breeding. Although the CRISPR/Cas9 system has been used to induce mutations in genes involved in various plant developmental processes, few studies have been performed to modify the color of ornamental flowers. We therefore attempted to use this system to modify flower color in the model plant torenia (Torenia fournieri L.). RESULTS: We attempted to induce mutations in the torenia flavanone 3-hydroxylase (F3H) gene, which encodes a key enzyme involved in flavonoid biosynthesis. Application of the CRISPR/Cas9 system successfully generated pale blue (almost white) flowers at a high frequency (ca. 80% of regenerated lines) in transgenic torenia T0 plants. Sequence analysis of PCR amplicons by Sanger and next-generation sequencing revealed the occurrence of mutations such as base substitutions and insertions/deletions in the F3H target sequence, thus indicating that the obtained phenotype was induced by the targeted mutagenesis of the endogenous F3H gene. CONCLUSIONS: These results clearly demonstrate that flower color modification by genome editing with the CRISPR/Cas9 system is easily and efficiently achievable. Our findings further indicate that this system may be useful for future research on flower pigmentation and/or functional analyses of additional genes in torenia.


Assuntos
Sistemas CRISPR-Cas , Flores/genética , Edição de Genes/métodos , Lamiales/genética , Proteína 9 Associada à CRISPR , Cor , Flores/anatomia & histologia , Genes de Plantas/genética , Lamiales/anatomia & histologia , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
10.
Breed Sci ; 68(4): 481-487, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30369823

RESUMO

Carnations carrying a recessive I gene show accumulation of the yellow pigment chalcononaringenin 2'-glucoside (Ch2'G) in their flowers, whereas those with a dominant I gene do accumulation the red pigment, anthocyanin. Although this metabolic alternative at the I gene could explain yellow and red flower phenotypes, it does not explain the development of orange flower phenotypes which result from the simultaneous accumulation of both Ch2'G and anthocyanin. The carnation whole genome sequencing project recently revealed that two chalcone isomerase genes are present, one that is consistent with the I gene (Dca60979) and another (Dca60978) that had not been characterized. Here, we demonstrate that Dca60979 shows a high level of gene expression and strong enzyme activity in plants with a red flower phenotype; however, functional Dca60979 transcripts are not detected in plants with an orange flower phenotype because of a dTdic1 insertion event. Dca60978 was expressed at a low level and showed a low level of enzyme activity in plants, which could catalyze a part of chalcone to naringenin to advance anthocyanin synthesis but the other part remained to be catalyzed chalcone to Ch2'G by chalcone 2'-glucosyltransferase, resulting in accumulation of anthocyanin and Ch2'G simultaneously to give orange color.

11.
Breed Sci ; 68(1): 139-143, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29681756

RESUMO

In a previous study, two genes responsible for white flower phenotypes in carnation were identified. These genes encoded enzymes involved in anthocyanin synthesis, namely, flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR), and showed reduced expression in the white flower phenotypes. Here, we identify another candidate gene for white phenotype in carnation flowers using an RNA-seq analysis followed by RT-PCR. This candidate gene encodes a transcriptional regulatory factor of the basic helix-loop-helix (bHLH) type. In the cultivar examined here, both F3H and DFR genes produced active enzyme proteins; however, expression of DFR and of genes for enzymes involved in the downstream anthocyanin synthetic pathway from DFR was repressed in the absence of bHLH expression. Occasionally, flowers of the white flowered cultivar used here have red speckles and stripes on the white petals. We found that expression of bHLH occurred in these red petal segments and induced expression of DFR and the following downstream enzymes. Our results indicate that a member of the bHLH superfamily is another gene involved in anthocyanin synthesis in addition to structural genes encoding enzymes.

12.
Angew Chem Int Ed Engl ; 55(42): 13151-13154, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27709815

RESUMO

Dendritic phosphors were obtained by the stepwise integration of BiCl3 in phenylazomethine dendrimers. The bismuth-coordinated phenylazomethines displayed photoluminescence at 500-800 nm, and the intensity could be tuned by changing the stoichiometry of BiCl3 and the dendrimer. This phosphor did not show serious luminescence quenching even though the local concentration of BiCl3 in the dendrimer was as high as 20 M, and luminescence was also observed in the solid state. The absorption and emission properties could be reversibly switched by addition of a Lewis base or under electrochemical redox control, which induced the reversible complexation of BiCl3 in the dendrimer.

13.
Plant Cell Physiol ; 56(4): 640-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588388

RESUMO

Stomatal movements are regulated by multiple environmental signals. Recent investigations indicate that photoperiodic flowering components, such as CRY, GI, CO, FT and TSF, are expressed in guard cells and positively affect stomatal opening in Arabidopsis thaliana. Here we show that SOC1, which encodes a MADS box transcription factor and integrates multiple flowering signals, also exerts a positive effect on stomatal opening. FLC encodes a potent repressor of FT and SOC1, and FRI acts as an activator of FLC. Thus, we examined stomatal phenotypes in FRI-Col, which contains an active FRI allele of accession Sf-2 by introgression. We found higher expression of FLC and lower expression of FT, SOC1 and TSF in guard cells from FRI-Col than in those from Col. Light-induced stomatal opening was significantly suppressed in FRI-Col. Interestingly, vernalization of FRI-Col partially restored light-induced stomatal opening, concomitant with a decrease of FLC and increase of FT, SOC1 and TSF. Furthermore, we observed the constitutive open-stomata phenotype in transgenic plants overexpressing SOC1-GFP (green fluorescent protein) in guard cells (SOC1-GFP overexpressor), and found that light-induced stomatal opening was significantly suppressed in a soc1 knockout mutant. RNA sequencing using epidermis from the SOC1-GFP overexpressor revealed that the expression levels of several genes involved in stomatal opening, such as BLUS1 and the plasma membrane H(+)-ATPases, were higher than those in background plants. From these results, we conclude that SOC1 is involved in the regulation of stomatal opening via transcriptional regulation in guard cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/metabolismo , Proteínas de Domínio MADS/metabolismo , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Luz , Mutação/genética , Fenótipo , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos da radiação , Regulação para Cima/efeitos da radiação
14.
Endocr J ; 62(12): 1127-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26440525

RESUMO

Annexin A5 (ANXA5), a member of the structurally related family of annexin proteins, is expressed in pituitary gonadotropes. We previously reported that ANXA5 expression is stimulated by gonadotropin-releasing hormone (GnRH). In the present study, we investigated ANXA5 expression in the anterior pituitary gland of GnRH-deficient mutant hypogonadal (hpg) mice. RT-PCR demonstrated that luteinizing hormone ß subunit (LHß) and ANXA5 mRNA levels were both lower in the pituitary gland of hpg mice than in wild-type mice. Immunohistochemistry showed that ANXA5 expression throughout the pituitary gland was very low in hpg mice, suggesting that ANXA5 is diminished in gonadotropes and also in other cell types. Subcutaneous administration of a GnRH analogue, des-gly10 (Pro9)-GnRH ethylamide (1 µg/day for 7 days), augmented the expression of LHß and ANXA5 in the pituitary gland in hpg mice. However, LHß- and ANXA5-positive cells did not show exactly matched spatial distributions. These findings suggest that GnRH is necessary for constitutive ANXA5 expression in the pituitary gland, not only in gonadotropes but also in other pituitary gland cell types. A close relationship between ANXA5 and LHß expression was confirmed. It is suggested that a significant role of ANXA5 in the physiologic secretion of LH.


Assuntos
Anexina A5/genética , Expressão Gênica , Hormônio Liberador de Gonadotropina/deficiência , Hormônio Liberador de Gonadotropina/fisiologia , Adeno-Hipófise/metabolismo , Animais , Anexina A5/metabolismo , Células Cultivadas , Hormônio Liberador de Gonadotropina/genética , Hipogonadismo/genética , Imuno-Histoquímica , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Camundongos , Camundongos Mutantes , Adeno-Hipófise/química , RNA Mensageiro/análise
15.
Plant Physiol ; 162(3): 1529-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23669744

RESUMO

FLOWERING LOCUS T (FT) is the major regulatory component controlling photoperiodic floral transition. It is expressed in guard cells and affects blue light-induced stomatal opening induced by the blue-light receptor phototropins phot1 and phot2. Roles for other flowering regulators in stomatal opening have yet to be determined. We show in Arabidopsis (Arabidopsis thaliana) that TWIN SISTER OF FT (TSF), CONSTANS (CO), and GIGANTEA (GI) provide a positive effect on stomatal opening. TSF, which is the closest homolog of FT, was transcribed in guard cells, and light-induced stomatal opening was repressed in tsf-1, a T-DNA insertion mutant of TSF. Overexpression of TSF in a phot1 phot2 mutant background gave a constitutive open-stomata phenotype. Then, we examined whether CO and GI, which are upstream regulators of FT and TSF in photoperiodic flowering, are involved in stomatal opening. Similar to TSF, light-induced stomatal opening was suppressed in the GI and CO mutants gi-1 and co-1. A constitutive open-stomata phenotype was observed in GI and CO overexpressors with accompanying changes in the transcription of both FT and TSF. In photoperiodic flowering, photoperiod is sensed by photoreceptors such as the cryptochromes cry1 and cry2. We examined stomatal phenotypes in a cry1 cry2 mutant and in CRY2 overexpressors. Light-induced stomatal opening was suppressed in cry1 cry2, and the transcription of FT and TSF was down-regulated. In contrast, the stomata in CRY2 overexpressors opened even in the dark, and FT and TSF transcription was up-regulated. We conclude that the photoperiodic flowering components TSF, GI, and CO positively affect stomatal opening.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Estômatos de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Ligação a DNA/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Proteína de Ligação a Fosfatidiletanolamina/genética , Fotoperíodo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
16.
Sci Rep ; 13(1): 6747, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185573

RESUMO

After a muscle injury, a process comprising inflammation, repair, and regeneration must occur in a time-sensitive manner for skeletal muscle to be adequately repaired and regenerated. This complex process is assumed to be controlled by various myeloid cell types, including monocytes and macrophages, though the mechanism is not fully understood. Aryl hydrocarbon receptor nuclear translocator-like (Arntl or Bmal1) is a transcription factor that controls the circadian rhythm and has been implicated in regulating myeloid cell functions. In the present study, we generated myeloid cell-specific Arntl conditional knockout (cKO) mice to assess the role of Arntl expressed in myeloid cell populations during the repair process after muscle injury. Myeloid cell-specific Arntl deletion impaired muscle regeneration after cardiotoxin injection. Flow cytometric analyses revealed that, in cKO mice, the numbers of infiltrating neutrophils and Ly6Chi monocytes within the injured site were reduced on days 1 and 2, respectively, after muscle injury. Moreover, neutrophil migration and the numbers of circulating monocytes were significantly reduced in cKO mice, which suggests these effects may account, at least in part, for the impaired regeneration. These findings suggest that Arntl, expressed in the myeloid lineage regulates neutrophil and monocyte recruitment and is therefore required for skeletal muscle regeneration.


Assuntos
Doenças Musculares , Infiltração de Neutrófilos , Animais , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Células Mieloides/metabolismo , Regeneração/fisiologia
17.
Plant Biotechnol (Tokyo) ; 40(3): 229-236, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38420567

RESUMO

Japanese cultivated gentians are highly valued ornamental flowers in Japan, but the flower shape is mostly limited to the single-flower type, unlike other flowers such as roses and carnations. To overcome this limitation, we used the CRISPR/Cas9 genome editing system to increase double-flowered genetic resources in gentians. Our approach targeted an AGAMOUS (AG) floral homeotic gene (AG1), which is responsible for the natural mutation that causes double flowers in gentians. We designed two targets in exon 1 of AG1 for genome editing and found that 9 of 12 herbicide-resistant shoots had biallelic mutations in the target regions of AG1. These nine lines all produced double flowers, with stamens converted into petaloid organs, similar to the natural mutant. We also analyzed the off-target effects of AG2, which is homologous to AG1, and found that such effects occurred in gentian genome editing but with low frequency. Furthermore, we successfully produced transgene-free genome-edited plants (null segregants) by crossing with wild-type pollen. F1 seedlings were subjected to PCR analysis to determine whether foreign DNA sequences, two partial regions of the CaMV35S promoter and Cas9 gene, were present in the genome. As a result, foreign genes were segregated at a 1 : 1 ratio, indicating successful null segregant production. Using PCR analysis, we confirmed that four representative null segregants did not contain transfer DNA. In summary, our study demonstrates that the CRISPR/Cas9 system can efficiently produce double-flowered gentians, and null segregants can also be obtained. These genome-edited plants are valuable genetic resources for future gentian breeding programs.

18.
Am J Vet Res ; : 1-9, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150823

RESUMO

OBJECTIVE: To establish a threshold value of bovine leukemia virus (BLV) proviral load (PVL) to identify increased risk of severe clinical mastitis, and to examine the prognosis and economic loss of clinical mastitis based on the newly established PVL cut-off value. ANIMALS: 97 lactating Holstein cows with clinical mastitis. METHODS: Blood and milk samples were collected aseptically from each cow. Youden index was used for receiver-operating characteristic curve analysis with the severity rate of clinical mastitis as the dependent variable and PVL as an independent variable. PVL cut-off value was used as a criterion to compare the severity rate of clinical mastitis, percentage of cows with and without systemic treatments, number of treatments, cost of treatment, and prognosis. RESULTS: PVL cut-off value was 17.8 copies/10 ng DNA for the dependent variable MILD vs SEVERE. The severity rate of clinical mastitis, percentage of cows given systemic treatments, and technical fees for medical treatment were significantly higher in the group above the PVL cut-off value than in the group below the PVL cut-off value and the negative group. Number of treatments was significantly higher in the group above the cut-off value than in the group below the cut-off value. There was no significant difference in prognosis after mastitis among the 3 groups. CLINICAL RELEVANCE: These results suggested that PVL cut-off value of 17.8 copies/10 ng DNA was a useful threshold for increased economic losses in BLV-infected cows; it may also serve as a new standard value for the detection and culling of BLV-infected cows in Japan.

19.
PLoS One ; 17(8): e0272665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951616

RESUMO

The lacquer tree, Toxicodendron vernicifluum, is a common industrial crop in East Asia. However, T. vernicifluum seeds are extremely difficult to germinate, which poses a major obstacle to establishing seedlings for sap production. In this study, we examined the germination properties of T. vernicifluum seeds in order to establish an inexpensive and effective method to promote seed germination. The seeds are covered with a hard endocarp, which we degrade using conventional sulfuric acid-based methods. Although sulfuric acid was effective in promoting seed germination, the germination rate was less than 5%. In addition to treatment with sulfuric acid, co-treatment with cold temperatures or the phytohormone gibberellic acid increased the germination rate to 22-35%. Seed viability analysis combined with specific gravity-based seed selection revealed that more than half of the seeds housed embryos that were incapable of germination. In additions, specific gravity-based seed selection aided in the selection of seeds capable of germination and improved the germination rate to approximately 47%. Taken together, our results suggest that the low germination rate of T. vernicifluum seeds is due to deep seed dormancy-which is controlled by physical and physiological mechanisms-and low embryo viability. To improve the germination rate of T. vernicifluum seeds, we propose an effective method whereby seeds with good germination capacity are selected based on specific gravity, following which their physiological dormancy is inactivated through cold pretreatment.


Assuntos
Germinação , Toxicodendron , Germinação/fisiologia , Laca , Dormência de Plantas/fisiologia , Sementes/metabolismo , Árvores
20.
Front Plant Sci ; 13: 906879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812931

RESUMO

Gentians cultivated in Japan (Gentiana triflora and Gentiana scabra and hybrids) have blue flowers, but flower colour intensity differs among cultivars. The molecular mechanism underlying the variation in flower colour intensity is unclear. Here, we produced F2 progeny derived from an F1 cross of intense- and faint-blue lines and attempted to identify the genes responsible for flower colour intensity using RNA-sequencing analyses. Comparative analysis of flower colour intensity and transcriptome data revealed differentially expressed genes (DEGs), although known flavonoid biosynthesis-related genes showed similar expression patterns. From quantitative RT-PCR (qRT-PCR) analysis, we identified two and four genes with significantly different expression levels in the intense- and faint-blue flower lines, respectively. We conducted further analyses on one of the DEGs, termed GtMIF1, which encodes a putative mini zinc-finger protein homolog, which was most differently expressed in faint-blue individuals. Functional analysis of GtMIF1 was performed by producing stable tobacco transformants. GtMIF1-overexpressing tobacco plants showed reduced flower colour intensity compared with untransformed control plants. DNA-marker analysis also confirmed that the GtMIF1 allele of the faint-blue flower line correlated well with faint flower colour in F2 progeny. These results suggest that GtMIF1 is one of the key genes involved in determining the flower colour intensity of gentian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA