Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharmacol ; 99(4): 256-265, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33547249

RESUMO

The high failure rate of drugs in the clinical pipeline is likely in part the result of inadequate preclinical models, particularly those for neurologic disorders and neurodegenerative disease. Such preclinical animal models often suffer from fundamental species differences and rarely recapitulate all facets of neurologic conditions, whereas conventional two-dimensional (2D) in vitro models fail to capture the three-dimensional spatial organization and cell-to-cell interactions of brain tissue that are presumed to be critical to the function of the central nervous system. Recent studies have suggested that stem cell-derived neuronal organoids are more physiologically relevant than 2D neuronal cultures because of their cytoarchitecture, electrophysiological properties, human origin, and gene expression. Hence there is interest in incorporating such physiologically relevant models into compound screening and lead optimization efforts within drug discovery. However, despite their perceived relevance, compared with previously used preclinical models, little is known regarding their predictive value. In fact, some have been wary to broadly adopt organoid technology for drug discovery because of the low-throughput and tedious generation protocols, inherent variability, and lack of compatible moderate-to-high-throughput screening assays. Consequently, microfluidic platforms, specialized bioreactors, and automated assays have been and are being developed to address these deficits. This mini review provides an overview of the gaps to broader implementation of neuronal organoids in a drug discovery setting as well as emerging technologies that may better enable their utilization. SIGNIFICANCE STATEMENT: Neuronal organoid models offer the potential for a more physiological system in which to study neurological diseases, and efforts are being made to employ them not only in mechanistic studies but also in profiling/screening purposes within drug discovery. In addition to exploring the utility of neuronal organoid models within this context, efforts in the field aim to standardize such models for consistency and adaptation to screening platforms for throughput evaluation. This review covers potential impact of and hurdles to implementation.


Assuntos
Descoberta de Drogas/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Organoides/efeitos dos fármacos , Organoides/fisiologia , Animais , Descoberta de Drogas/tendências , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Doenças Neurodegenerativas/fisiopatologia
2.
Neurobiol Dis ; 159: 105507, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509608

RESUMO

Mutations in the lysosomal enzyme glucocerebrosidase (GCase, GBA1 gene) are the most common genetic risk factor for developing Parkinson's disease (PD). GCase metabolizes the glycosphingolipids glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Mutations in GBA1 reduce enzyme activity and the resulting accumulation of glycosphingolipids may contribute to the underlying pathology of PD, possibly via altering lysosomal function. While reduction of GCase activity exacerbates α-synuclein (α-syn) aggregation, it has not been determined that this effect is the result of altered glycosphingolipid levels and lysosome function or some other effect of altering GCase. The glycosphingolipid GlcCer is synthesized by a single enzyme, glucosylceramide synthase (GCS), and small molecule inhibitors (GCSi) reduce cellular glycosphingolipid levels. In the present studies, we utilize a preformed fibril (PFF) rodent primary neuron in vitro model of α-syn pathology to investigate the relationship between glycosphingolipid levels, α-syn pathology, and lysosomal function. In primary cultures, pharmacological inhibition of GCase and D409V GBA1 mutation enhanced accumulation of glycosphingolipids and insoluble phosphorylated α-syn. Administration of a novel small molecule GCSi, benzoxazole 1 (BZ1), significantly decreased glycosphingolipid concentrations in rodent primary neurons and reduced α-syn pathology. BZ1 rescued lysosomal deficits associated with the D409V GBA1 mutation and α-syn PFF administration, and attenuated α-syn induced neurodegeneration of dopamine neurons. In vivo studies revealed BZ1 had pharmacological activity and reduced glycosphingolipids in the mouse brain to a similar extent observed in neuronal cultures. These data support the hypothesis that reduction of glycosphingolipids through GCS inhibition may impact progression of synucleinopathy and BZ1 is useful tool to further examine this important biology.


Assuntos
Benzoxazóis/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucosilceramidase/genética , Glucosiltransferases/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Lisossomos/efeitos dos fármacos , Sinucleinopatias/metabolismo , alfa-Sinucleína/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/metabolismo , Técnicas In Vitro , Lisossomos/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Cultura Primária de Células , Agregados Proteicos , Ratos , Sinucleinopatias/genética , alfa-Sinucleína/metabolismo
3.
ACS Med Chem Lett ; 15(1): 123-131, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229758

RESUMO

Inhibition of glucosylceramide synthase (GCS) has been proposed as a therapeutic strategy for the treatment of Parkinson's Disease (PD), particularly in patients where glycosphingolipid accumulation and lysosomal impairment are thought to be contributing to disease progression. Herein, we report the late-stage optimization of an orally bioavailable and CNS penetrant isoindolinone class of GCS inhibitors. Starting from advanced lead 1, we describe efforts to identify an improved compound with a lower human dose projection, minimal P-glycoprotein (P-gp) efflux, and acceptable pregnane X receptor (PXR) profile through fluorine substitution. Our strategy involved the use of predicted volume ligand efficiency to advance compounds with greater potential for low human doses down our screening funnel. We also applied minimized electrostatic potentials (Vmin) calculations for hydrogen bond acceptor sites to rationalize P-gp SAR. Together, our strategies enabled the alignment of a lower human dose with reduced P-gp efflux, and favorable PXR selectivity for the discovery of compound 12.

4.
ACS Med Chem Lett ; 14(2): 146-155, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793422

RESUMO

Parkinson's disease is the second most prevalent progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations in GBA, the gene that encodes for the lysosomal enzyme glucosylcerebrosidase, are a major genetic risk factor for the development of Parkinson's disease potentially through the accumulation of glucosylceramide and glucosylsphingosine in the CNS. A therapeutic strategy to reduce glycosphingolipid accumulation in the CNS would entail inhibition of the enzyme responsible for their synthesis, glucosylceramide synthase (GCS). Herein, we report the optimization of a bicyclic pyrazole amide GCS inhibitor discovered through HTS to low dose, oral, CNS penetrant, bicyclic pyrazole urea GCSi's with in vivo activity in mouse models and ex vivo activity in iPSC neuronal models of synucleinopathy and lysosomal dysfunction. This was accomplished through the judicious use of parallel medicinal chemistry, direct-to-biology screening, physics-based rationalization of transporter profiles, pharmacophore modeling, and use a novel metric: volume ligand efficiency.

5.
J Pharmacol Exp Ther ; 338(2): 622-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21558436

RESUMO

Alzheimer's disease and schizophrenia are characterized by expression of psychotic, affective, and cognitive symptoms. Currently, there is a lack of adequate treatment for the cognitive symptoms associated with these diseases. Cholinergic signaling and, in particular, M1 muscarinic acetylcholine receptor (m1AChR) signaling have been implicated in the regulation of multiple cognitive domains. Thus, the M1AChR has been identified as a therapeutic drug target for diseases, such as schizophrenia and Alzheimer's disease, that exhibit marked cognitive dysfunction as part of their clinical manifestation. Unfortunately, the development of selective M1 agonist medications has not been successful, mostly because of the highly conserved orthosteric acetylcholine binding site among the five muscarinic receptor subtypes. More recent efforts have focused on the development of allosteric M1AChR modulators that target regions of the receptor distinct from the orthosteric site that are less conserved between family members. However, orthosteric and allosteric ligands may differentially modulate receptor function and ultimately downstream signaling pathways. Thus, the need for highly selective M1AChR orthosteric agonists still exists, not only as a potential therapeutic but also as a pharmacological tool to better understand the physiologic consequences of M1AChR orthosteric activation. Here, we describe the novel, potent and selective M1AChR orthosteric partial agonist LY593093 [N-[(1R,2R)-6-({(1E)-1-[(4-fluorobenzyl)(methyl)amino]ethylidene})amino)-2-hydroxy-2,3-dihydro-1H-inden-1-yl]biphenyl-4-carboxamide]. This compound demonstrates modest to no activity at the other muscarinic receptor subtypes, stimulates Gα(q)-coupled signaling events as well as ß-arrestin recruitment, and displays significant efficacy in in vivo models of cognition.


Assuntos
Compostos de Bifenilo/metabolismo , Compostos de Bifenilo/farmacologia , Agonismo Parcial de Drogas , Indenos/metabolismo , Indenos/farmacologia , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/agonistas , Acetilcolina/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Compostos de Bifenilo/química , Células CHO , Sinalização do Cálcio/efeitos dos fármacos , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/prevenção & controle , Cricetinae , Cricetulus , Modelos Animais de Doenças , Indenos/química , Camundongos , Camundongos Knockout , Agonistas Muscarínicos/administração & dosagem , Agonistas Muscarínicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M1/metabolismo
6.
Eur J Pharmacol ; 782: 70-6, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27085897

RESUMO

Identification of synthetic ligands selective for muscarinic receptor subtypes has been challenging due to the high sequence identity and structural homology among the five muscarinic acetylcholine receptors. Here, we report the pharmacological characterization of PCS1055, a novel muscarinic M4 receptor antagonist. PCS1055 inhibited radioligand [(3)H]-NMS binding to the M4 receptor with a Ki=6.5nM. Though the potency of PCS1055 is lower than that of pan-muscarinic antagonist atropine, it has better subtype selectivity over previously reported M4-selective reagents such as the muscarinic-peptide toxins (Karlsson et al., 1994; Santiago and Potter, 2001a) at the M1 subtype, and benzoxazine ligand PD102807 at the M3-subtype (Bohme et al., 2002). A detailed head-to-head comparison study using [(3)H]-NMS competitive binding assays characterizes the selectivity profiles of PCS1055 to that of other potent muscarinic-antagonist compounds PD102807, tropicamide, AF-DX-384, pirenzapine, and atropine. In addition to binding studies, the subtype specificity of PCS1055 is also demonstrated by functional receptor activation as readout by GTP-γ-[(35)S] binding. These GTP-γ-[(35)S] binding studies showed that PCS1055 exhibited 255-, 69.1-, 342- and >1000-fold greater inhibition of Oxo-M activity at the M4 versus the M1-, M2(-), M3-or M5 receptor subtypes, respectively. Schild analyses indicates that PCS1055 acts as a competitive antagonist to muscarinic M4 receptor, and confirms the affinity of the ligand to be low nanomolar, Kb=5.72nM. Therefore, PCS1055 represents a new M4-preferring antagonist that may be useful in elucidating the roles of M4 receptor signaling.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , Antagonistas Muscarínicos/farmacologia , Piridazinas/farmacologia , Receptor Muscarínico M4/antagonistas & inibidores , Animais , Ligação Competitiva , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Compostos Heterocíclicos com 3 Anéis/sangue , Compostos Heterocíclicos com 3 Anéis/metabolismo , Humanos , Masculino , Camundongos , Antagonistas Muscarínicos/sangue , Antagonistas Muscarínicos/metabolismo , Piridazinas/sangue , Piridazinas/metabolismo , Receptor Muscarínico M4/metabolismo , Especificidade por Substrato
7.
Neuropsychopharmacology ; 38(13): 2717-26, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23907402

RESUMO

The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist 'BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2(-/-), M4(-/-), and M2/M4 (M2/M4(-/-)) mice found that the effects of BuTAC were near completely lost in M2/M4(-/-) double-knockout mice and potency of BuTAC was right-shifted in M4(-/-) as compared with wild-type and M2(-/-) mice. The M2/M4(-/-) mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms associated with schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Receptor Muscarínico M4/metabolismo , Tropanos/farmacologia , Análise de Variância , Animais , Aprendizagem da Esquiva/fisiologia , Células CHO , Condicionamento Operante/fisiologia , Cricetulus , Relação Dose-Resposta a Droga , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Haloperidol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica/efeitos dos fármacos , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M4/deficiência
8.
Sci Transl Med ; 2(52): 52ra73, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20926834

RESUMO

Parkinson's disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson's and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson's disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) are underexpressed in Parkinson's disease patients. Activation of PGC-1α results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson's disease identifies PGC-1α as a potential therapeutic target for early intervention.


Assuntos
Diagnóstico Precoce , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico , Doença de Parkinson/genética , Doença de Parkinson/terapia , Fatores de Transcrição , Adulto , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional/métodos , Bases de Dados Genéticas , Dopamina/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA