Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecol Appl ; 32(7): e2650, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538738

RESUMO

Interest is growing in developing conservation strategies to restore and maintain coral reef ecosystems in the face of mounting anthropogenic stressors, particularly climate warming and associated mass bleaching events. One such approach is to propagate coral colonies ex situ and transplant them to degraded reef areas to augment habitat for reef-dependent fauna, prevent colonization from spatial competitors, and enhance coral reproductive output. In addition to such "demographic restoration" efforts, manipulating the thermal tolerance of outplanted colonies through assisted relocation, selective breeding, or genetic engineering is being considered for enhancing rates of evolutionary adaptation to warming. Although research into such "assisted evolution" strategies has been growing, their expected performance remains unclear. We evaluated the potential outcomes of demographic restoration and assisted evolution in climate change scenarios using an eco-evolutionary simulation model. We found that supplementing reefs with pre-existing genotypes (demographic restoration) offers little climate resilience benefits unless input levels are large and maintained for centuries. Supplementation with thermally resistant colonies was successful at improving coral cover at lower input levels, but only if maintained for at least a century. Overall, we found that, although demographic restoration and assisted evolution have the potential to improve long-term coral cover, both approaches had a limited impact in preventing severe declines under climate change scenarios. Conversely, with sufficient natural genetic variance and time, corals could readily adapt to warming temperatures, suggesting that restoration approaches focused on building genetic variance may outperform those based solely on introducing heat-tolerant genotypes.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Demografia , Ecossistema
2.
Glob Chang Biol ; 27(18): 4307-4321, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34106494

RESUMO

Corals are experiencing unprecedented decline from climate change-induced mass bleaching events. Dispersal not only contributes to coral reef persistence through demographic rescue but can also hinder or facilitate evolutionary adaptation. Locations of reefs that are likely to survive future warming therefore remain largely unknown, particularly within the context of both ecological and evolutionary processes across complex seascapes that differ in temperature range, strength of connectivity, network size, and other characteristics. Here, we used eco-evolutionary simulations to examine coral adaptation to warming across reef networks in the Caribbean, the Southwest Pacific, and the Coral Triangle. We assessed the factors associated with coral persistence in multiple reef systems to understand which results are general and which are sensitive to particular geographic contexts. We found that evolution can be critical in preventing extinction and facilitating the long-term recovery of coral communities in all regions. Furthermore, the strength of immigration to a reef (destination strength) and current sea surface temperature robustly predicted reef persistence across all reef networks and across temperature projections. However, we found higher initial coral cover, slower recovery, and more evolutionary lag in the Coral Triangle, which has a greater number of reefs and more larval settlement than the other regions. We also found the lowest projected future coral cover in the Caribbean. These findings suggest that coral reef persistence depends on ecology, evolution, and habitat network characteristics, and that, under an emissions stabilization scenario (RCP 4.5), recovery may be possible over multiple centuries.


Assuntos
Antozoários , Recifes de Corais , Animais , Mudança Climática , Ecossistema , Temperatura
4.
Biol Lett ; 15(10): 20190335, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31573425

RESUMO

Numerous studies have reported functional improvements in collective behaviour with increasing group size, however, the possibility that such improvements may saturate or even decline as group size continues to grow have seldom been tested experimentally. Here, we tested the ability of solitary three-spined sticklebacks and those in groups, ranging from 2 to 29 fish, to leave an unfavourable patch of habitat. Our results replicate the findings of previous studies at low group sizes, with the fish initially showing a reduction in their latency to leave the unfavourable habitat as group size increased. As group size continued to increase, however, latency to leave the habitat increased, so that the functional relationship between group size and latency to depart was U-shaped. Our results suggest an optimum group size in this context of between 12 and 20 fish. Underlying this group-level trend was a similar U-shaped relationship between group size and the first fish to leave the habitat, suggesting that at larger group sizes, social conformity to the behaviour of the majority can stifle the ability of fish to innovate-in this case, to induce a collective movement from the unfavourable habitat.


Assuntos
Smegmamorpha , Animais , Tomada de Decisões , Ecossistema , Peixes , Conformidade Social
5.
Artigo em Inglês | MEDLINE | ID: mdl-38941355

RESUMO

Group-living in animals comes with a number of benefits associated with predator avoidance, foraging, and reproduction. A large proportion of fish species display grouping behaviour. Fish may also be particularly vulnerable to climate-related stressors including thermal variation, hypoxia, and acidification. As climate-related stressors are expected to increase in magnitude and frequency, any effects on fish behaviour may be increased and affect the ability of fish species to cope with changing conditions. Here we conduct a systematic review of the effects of temperature, hypoxia, and acidification on individual sociability and group cohesion in shoaling and schooling fishes. Searches of the published and grey literature were carried out, and studies were included or excluded based on selection criteria. Data from studies were then included in a meta-analysis to examine broad patterns of effects of climate-related stressors in the literature. Evidence was found for a reduction in group cohesion at low oxygen levels, which was stronger in smaller groups. While several studies reported effects of temperature and acidification, there was no consistent effect of either stressor on sociability or cohesion. There was some evidence that marine fishes are more strongly negatively affected by acidification compared with freshwater species, but results are similarly inconsistent and more studies are required. Additional studies of two or more stressors in combination are also needed, although one study found reduced sociability following exposure to acidification and high temperatures. Overall, there is some evidence that hypoxia, and potentially other climate-related environmental changes, impact sociability and group cohesion in fishes. This may reduce survival and adaptability in shoaling and schooling species and have further ecological implications for aquatic systems. However, this synthesis mainly highlights the need for more empirical studies examining the effects of climate-related factors on social behaviour in fishes.

6.
Ecology ; 102(7): e03381, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942289

RESUMO

Global environmental change is challenging species with novel conditions, such that demographic and evolutionary trajectories of populations are often shaped by the exchange of organisms and alleles across landscapes. Current ecological theory predicts that random networks with dispersal shortcuts connecting distant sites can promote persistence when there is no capacity for evolution. Here, we show with an eco-evolutionary model that dispersal shortcuts across environmental gradients instead hinder persistence for populations that can evolve because long-distance migrants bring extreme trait values that are often maladaptive, short-circuiting the adaptive response of populations to directional change. Our results demonstrate that incorporating evolution and environmental heterogeneity fundamentally alters theoretical predictions regarding persistence in ecological networks.


Assuntos
Evolução Biológica , Ecossistema , Modelos Biológicos , Fenótipo , Dinâmica Populacional
7.
Proc Biol Sci ; 274(1613): 1071-7, 2007 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-17284411

RESUMO

The ability of animals to gather information about their social and physical environment is essential for their ecological function. Odour cues are an important component of this information gathering across taxa. Recent laboratory studies have revealed the importance of flexible chemical cues in facilitating social recognition of fishes. These cues are known to be mediated by recent habitat experience and fishes are attracted to individuals that smell like themselves. However, to be relevant to wild populations, where animals may move and forage freely, these cues would have to be temporally flexible and allow spatial resolution. Here, we present data from a study of social recognition in wild populations of three-spined sticklebacks (Gasterosteus aculeatus). Focal fish preferentially associated with conspecifics from the same habitat as themselves. These preferences were changed and updated following translocation of the focal fish to a different site. Further investigation revealed that association preferences changed after 3 h of exposure to different habitat cues. In addition to temporal flexibility, the cues also allowed a high degree of spatial resolution: fish taken from sites 200 m apart produced cues that were sufficiently different to enable the focal fish to discriminate and associate with fish captured near their own home site. The adaptive benefits of this social recognition mechanism remain unclear, though they may allow fish to orient within their social environment and gain current local information.


Assuntos
Comportamento Animal , Smegmamorpha/fisiologia , Comportamento Social , Animais , Sinais (Psicologia) , Meio Ambiente , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA