Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Devices Sens ; 3(4): e10106, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32838208

RESUMO

The COVID-19 pandemic has produced critical shortages of ventilators worldwide. There is an unmet need for rapidly deployable, emergency-use ventilators with sufficient functionality to manage COVID-19 patients with severe acute respiratory distress syndrome. Here, we show the development and validation of a simple, portable and low-cost ventilator that may be rapidly manufactured with minimal susceptibility to supply chain disruptions. This single-mode continuous, mandatory, closed-loop, pressure-controlled, time-terminated emergency ventilator offers robust safety and functionality absent in existing solutions to the ventilator shortage. Validated using certified test lungs over a wide range of compliances, pressures, volumes and resistances to meet U.S. Food and Drug Administration standards of safety and efficacy, an Emergency Use Authorization is in review for this system. This emergency ventilator could eliminate controversial ventilator rationing or splitting to serve multiple patients. All design and validation information is provided to facilitate ventilator production even in resource-limited settings.

2.
J Vis Exp ; (123)2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28518116

RESUMO

Many chronic airway diseases result in mucus plugging of the airways. Lungs of an individual with cystic fibrosis are an exemplary case where their mucus-plugged bronchioles create a favorable habitat for microbial colonization. Various pathogens thrive in this environment interacting with each other and driving many of the symptoms associated with CF disease. Like any microbial community, the chemical conditions of their habitat have a significant impact on the community structure and dynamics. For example, different microorganisms thrive in differing levels of oxygen or other solute concentrations. This is also true in the CF lung, where oxygen concentrations are believed to drive community physiology and structure. The methods described here are designed to mimic the lung environment and grow pathogens in a manner more similar to that from which they cause disease. Manipulation of the chemical surroundings of these microbes is then used to study how the chemistry of lung infections governs its microbial ecology. The method, called the WinCF system, is based on artificial sputum medium and narrow capillary tubes meant to provide an oxygen gradient similar to that which exists in mucus-plugged bronchioles. Manipulating chemical conditions, such as the media pH of the sputum or antibiotics pressure, allows for visualization of the microbiological differences in those samples using colored indicators, watching for gas or biofilm production, or extracting and sequencing the nucleic acid contents of each sample.


Assuntos
Bronquíolos/microbiologia , Modelos Biológicos , Infecções Respiratórias/microbiologia , Fibrose Cística/microbiologia , Humanos , Pulmão/microbiologia , Muco/microbiologia , Escarro/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA