Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(2): e3002205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300958

RESUMO

Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/metabolismo , Biofilmes , Infecções por Pseudomonas/microbiologia , Fímbrias Bacterianas
2.
Proc Natl Acad Sci U S A ; 121(5): e2309811121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252832

RESUMO

Nanomedicine has emerged as a revolutionary strategy of drug delivery. However, fundamentals of the nano-neuro interaction are elusive. In particular, whether nanocarriers can cross the blood-brain barrier (BBB) and release the drug cargo inside the brain, a basic process depicted in numerous books and reviews, remains controversial. Here, we develop an optical method, based on stimulated Raman scattering, for imaging nanocarriers in tissues. Our method achieves a suite of capabilities-single-particle sensitivity, chemical specificity, and particle counting capability. With this method, we visualize individual intact nanocarriers crossing the BBB of mouse brains and quantify the absolute number by particle counting. The fate of nanocarriers after crossing the BBB shows remarkable heterogeneity across multiple scales. With a mouse model of aging, we find that blood-brain transport of nanocarriers decreases with age substantially. This technology would facilitate development of effective therapeutics for brain diseases and clinical translation of nanocarrier-based treatment in general.


Assuntos
Encefalopatias , Nanomedicina , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Barreira Hematoencefálica/diagnóstico por imagem , Envelhecimento
3.
Nano Lett ; 24(3): 1024-1033, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207237

RESUMO

Nanomedicine has brought significant advancements to healthcare by utilizing nanotechnology in medicine. Despite much promise, the further development of nanocarriers for clinical use has been hindered by a lack of understanding and visualization of nano-bio interactions. Conventional imaging methods have limitations in resolution, sensitivity, and specificity. This study introduces a label-free optical approach using stimulated Raman scattering (SRS) microscopy to image poly(lactic-co-glycolic acid) (PLGA) nanocarriers, the most widely used polymeric nanocarrier for delivery therapeutic agents, with single-particle sensitivity and quantification capabilities. A unique Raman peak was identified for PLGA ester, enabling generalized bio-orthogonal bond imaging. We demonstrated quantitative SRS imaging of PLGA nanocarriers across different biological systems from cells to animal tissues. This label-free imaging method provides a powerful tool for studying this prevalent nanocarrier and quantitatively visualizing their distribution, interaction, and clearance in vivo.


Assuntos
Microscopia , Nanopartículas , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Nanopartículas/química
4.
Jpn J Infect Dis ; 77(3): 182-186, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38296543

RESUMO

Nafamostat mesylate, a synthetic serine protease inhibitor, has been shown to have antiviral activity against SARS-CoV-2 and anticoagulant properties that may be beneficial in the treatment of COVID-19. We conducted a meta-analysis to evaluate the effectiveness and safety of nafamostat mesylate for the treatment of COVID-19. PubMed, Embase, Cochrane Library, Scopus, Web of Science, medRxiv, and bioRxiv were searched up to July 2023 for studies comparing the outcomes of nafamostat mesylate treatment and no nafamostat mesylate treatment in patients with COVID-19. Mortality, disease progression, and adverse events were analyzed. Six studies involving 16,195 patients were included in the analysis. Meta-analysis revealed no significant difference in mortality (odds ratio [OR]: 0.88, 95% CI: 0.20-3.75, P = 0.86) or disease progression (OR: 2.76, 95% CI: 0.31-24.68, P = 0.36) between groups. However, nafamostat mesylate was associated with an increased risk of hyperkalemia (OR: 7.15, 95% CI: 2.66-19.24, P < 0.0001). Nafamostat mesylate did not improve mortality or morbidity in hospitalized patients with COVID-19. The risk of hyperkalemia is a serious concern that requires monitoring and preventive measures. Further research in different COVID-19 populations is required.


Assuntos
Benzamidinas , Tratamento Farmacológico da COVID-19 , COVID-19 , Guanidinas , SARS-CoV-2 , Humanos , Benzamidinas/uso terapêutico , Guanidinas/uso terapêutico , Guanidinas/efeitos adversos , COVID-19/mortalidade , SARS-CoV-2/efeitos dos fármacos , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Resultado do Tratamento , Progressão da Doença , Hiperpotassemia/tratamento farmacológico
5.
Food Chem ; 445: 138796, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471345

RESUMO

The porous materials (PM) were prepared by the Pickering high internal phase emulsion (PHIPE) template. Firstly, the nanoparticles named as ZHMNPs or MZHMNPs were fabricated based on zein, Hohenbuehelia serotina polysaccharides and Malus baccata (Linn.) Borkh polyphenols without or with Maillard reaction, the average particle sizes and zeta potentials of which were distributed in a range of 718.1-979.4 nm and -21.6-25.2 mV. ZHMNPs possessed the relatively uniform spherical morphology, while MZHMNPs were irregular in shape. With ZHMNPs or MZHMNPs serving as the stabilizers, the PHIPEs were prepared, and exhibited the good viscoelasticity and excellent storage and freeze-thaw stabilities. Based on above PHIPEs template, the constructed PM possessed the large specific surface area and uniform pore structure. Through the investigations of adsorption performances, PM showed the outstanding adsorption capacities on Pb2+ and Cu2+ ions regardless of dissolving in deionized water or simulated gastrointestinal digestive fluid. Furthermore, the results also showed that the pH, temperature and adsorbent dosage had certain impacts on the adsorption performances of PM on Pb2+ and Cu2+ ions.


Assuntos
Chumbo , Nanopartículas , Emulsões/química , Porosidade , Adsorção , Polifenóis , Água , Polissacarídeos , Nanopartículas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA