Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(5): e55903, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975049

RESUMO

In the arthropod gut, commensal microbiota maintain the immune deficiency (Imd)/Relish pathway for expression of antimicrobial peptides, whereas pathogenic bacteria induce dual oxidase 2 (Duox2) for production of extracellular microbicidal reactive oxygen species (ROS). The Imd/Relish pathway and the Duox2/ROS system are regarded as independent systems. Here, we report that these two systems are bridged by the tumor necrosis factor (TNF) ortholog PcEiger in the red swamp crayfish Procambarus clarkii. PcEiger expression is induced by commensal bacteria or the Imd/Relish pathway. PcEiger knockdown alters bacterial abundance and community composition due to variations in the oxidative status of the intestine. PcEiger induces Duox2 expression and ROS production by regulating the activity of the transcription factor Atf2. Moreover, PcEiger mediates regulation of the Duox2/ROS system by commensal bacteria and the Imd/Relish pathway. Our findings suggest that the Imd/Relish pathway regulates the Duox2/ROS system via PcEiger in P. clarkii, and they provide insights into the crosstalk between these two important mechanisms for arthropod intestinal immunity.


Assuntos
Astacoidea , Fatores de Transcrição , Animais , Astacoidea/metabolismo , Astacoidea/microbiologia , Espécies Reativas de Oxigênio , Oxidases Duais/genética , Fatores de Transcrição/metabolismo , Intestinos , Imunidade Inata
2.
PLoS Pathog ; 18(11): e1010967, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417479

RESUMO

Small antibacterial effectors, including lysozymes, lectins, and antimicrobial peptides, are key regulators of intestinal immunity. However, whether there is coordination among them during regulation is an interesting, but largely unknown, issue. In the present study, we revealed that small effectors synergistically regulate peptidoglycan-derived intestinal immunity in the kuruma shrimp, Marsupenaeus japonicus. A C-type lysozyme (LysC) was screened as a responsive factor for the intestine-bacteria interaction. LysC functions to restrict intestinal bacteria, mainly by cleaving Photobacterium damselae peptidoglycan to generate muropeptides which are powerful stimulators that induce anti-lipopolysaccharides factor B1 (AlfB1), an effective bactericidal peptide. The muropeptides also induce a C-type lectin (Ctl24), which recognizes peptidoglycan and coats bacteria. By counteracting LysC-mediated muropeptide release and AlfB1's bactericidal activity, Ctl24 prevents the continuous elimination of intestinal bacteria. Therefore, this study demonstrates a mechanism by which small immune effectors coordinate to achieve intestinal homeostasis, and provides new insights into peptidoglycan-derived intestinal immunity in invertebrates.


Assuntos
Penaeidae , Peptidoglicano , Animais , Parede Celular , Intestinos , Lectinas Tipo C
3.
Hum Reprod ; 39(6): 1239-1246, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38604654

RESUMO

STUDY QUESTION: Does severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the frozen-thawed embryo transfer (FET) cycle affect embryo implantation and pregnancy rates? SUMMARY ANSWER: There is no evidence that SARS-CoV-2 infection of women during the FET cycle negatively affects embryo implantation and pregnancy rates. WHAT IS KNOWN ALREADY: Coronavirus disease 2019 (COVID-19), as a multi-systemic disease, poses a threat to reproductive health. However, the effects of SARS-CoV-2 infection on embryo implantation and pregnancy following fertility treatments, particularly FET, remain largely unknown. STUDY DESIGN, SIZE, DURATION: This retrospective cohort study, included women who underwent FET cycles between 1 November 2022 and 31 December 2022 at an academic fertility centre. PARTICIPANTS/MATERIALS, SETTING, METHODS: Women who tested positive for SARS-CoV-2 during their FET cycles were included in the COVID-19 group, while those who tested negative during the same study period were included in the non-COVID-19 group. The primary outcome was ongoing pregnancy rate. Secondary outcomes included rates of implantation, biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy. Multivariate logistic regression models were applied to adjust for potential confounders including age, body mass index, gravidity, vaccination status, and endometrial preparation regimen. Subgroup analyses were conducted by time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) and by level of fever (no fever, fever <39°C, or fever ≥39°C). MAIN RESULTS AND THE ROLE OF CHANCE: A total of 243 and 305 women were included in the COVID-19 and non-COVID-19 group, respectively. The rates of biochemical pregnancy (58.8% vs 62.0%, P = 0.46), clinical pregnancy (53.1% vs 54.4%, P = 0.76), implantation (46.4% vs 46.2%, P = 0.95), early pregnancy loss (24.5% vs 26.5%, P = 0.68), and ongoing pregnancy (44.4% vs 45.6%, P = 0.79) were all comparable between groups with or without infection. Results of logistic regression models, both before and after adjustment, revealed no associations between SARS-CoV-2 infection and rates of biochemical pregnancy, clinical pregnancy, early pregnancy loss, or ongoing pregnancy. Moreover, neither the time of infection with respect to transfer (prior to transfer, 1-7 days after transfer, or 8-14 days after transfer) nor the level of fever (no fever, fever <39°C, or fever ≥39°C) was found to be related to pregnancy rates. LIMITATIONS, REASONS FOR CAUTION: The retrospective nature of the study is subject to possible selection bias. Additionally, although the sample size was relatively large for the COVID-19 group, the sample sizes for certain subgroups were relatively small and lacked adequate power, so these results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS: The study findings suggest that SARS-CoV-2 infection during the FET cycle in females does not affect embryo implantation and pregnancy rates including biochemical pregnancy, clinical pregnancy, early pregnancy loss, and ongoing pregnancy, indicating that cycle cancellation due to SARS-CoV-2 infection may not be necessary. Further studies are warranted to verify these findings. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2023YFC2705500, 2019YFA0802604), National Natural Science Foundation of China (82130046, 82101747), Shanghai leading talent program, Innovative research team of high-level local universities in Shanghai (SHSMU-ZLCX20210201, SHSMU-ZLCX20210200, SSMU-ZLCX20180401), Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Clinical Research Innovation Cultivation Fund Program (RJPY-DZX-003), Science and Technology Commission of Shanghai Municipality (23Y11901400), Shanghai Sailing Program (21YF1425000), Shanghai's Top Priority Research Center Construction Project (2023ZZ02002), Three-Year Action Plan for Strengthening the Construction of the Public Health System in Shanghai (GWVI-11.1-36), and Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161413). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
COVID-19 , Implantação do Embrião , Transferência Embrionária , Resultado da Gravidez , Taxa de Gravidez , SARS-CoV-2 , Humanos , Feminino , Gravidez , COVID-19/epidemiologia , Transferência Embrionária/métodos , Adulto , Estudos Retrospectivos , Criopreservação
4.
Jpn J Clin Oncol ; 54(1): 23-30, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850297

RESUMO

BACKGROUND: Sarcopenia, overweight and obesity are all dynamic changes in body composition, which may have a negative effect on the prognosis for patients with colorectal cancer. The aim of this study was to investigate the predictive role of sarcopenia on overweight or obese patients with colorectal cancer. METHODS: We conducted an observative study on the population of overweight or obese patients with colorectal cancer who underwent curative surgeries in two centers between 2015 and 2021. They were grouped by the presence of sarcopenia. Propensity score match analysis was used to balance the baseline of clinicopathologic characteristics of the two groups. Then, the postoperative outcomes between the two groups were compared. Independent risk factors were evaluated for complications using univariate and multivariate analysis. RESULTS: Of 827 patients enrolled, 126 patients were matched for analysis. Patients with sarcopenia had a higher incidence of total complication and medical complications, a higher rate of laparoscopic surgery performed and higher hospitalization costs. Old age (≥65 years, P = 0.012), ASA grade (III, P = 0.008) and sarcopenia (P = 0.036) were independent risk factors for total complications. ASA grade (III, P = 0.002) and sarcopenia (P = 0.017) were independent risk factors for medical complications. CONCLUSIONS: Sarcopenia was prevalent among overweight or obese patients with colorectal cancer and was associated with negative postoperative outcomes. Early recognition of changes in body composition could help surgeons be well prepared for surgical treatment for overweight or obese patients.


Assuntos
Neoplasias Colorretais , Sarcopenia , Humanos , Idoso , Sarcopenia/complicações , Sarcopenia/epidemiologia , Sobrepeso/complicações , Neoplasias Colorretais/complicações , Neoplasias Colorretais/cirurgia , Obesidade/complicações , Prognóstico , Fatores de Risco , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
5.
J Appl Toxicol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812125

RESUMO

Ochratoxin A (OTA) is a type of mycotoxin commonly found in raw and processed foods. It is essential to be aware of this toxin, as it can harm your health if consumed in high quantities. OTA can induce toxic effects in various cell models. However, a more comprehensive understanding of the harmful effects of OTA on human astrocytes is required. This study evaluated OTA's neurotoxic effects on the Gibco® Human Astrocyte (GHA) cell line, its underlying mechanisms, and the antioxidant N-acetylcysteine (NAC) ability to prevent them. OTA exposure within 5-30 µM has induced concentration-dependent cytotoxicity. In the OTA-treated cells, the levels of reactive oxygen species (ROS) were found to be significantly increased, while the glutathione (GSH) contents were found to decrease considerably. The western blotting of OTA-treated cells has revealed increased Bax, cleaved caspase-9/caspase-3 protein levels, and increased Bax/Bcl-2 ratio. In addition, exposure to OTA has resulted in the induction of antioxidant responses associated with the protein expressions of Nrf2, HO-1, and NQO1. On the other hand, the pretreatment with NAC has partially alleviated the significant toxic effects of OTA. In conclusion, our findings suggest that oxidative stress and apoptosis are involved in the OTA-induced cytotoxicity in GHA cells. NAC could act as a protective agent against OTA-induced oxidative damage.

6.
J Acoust Soc Am ; 155(2): 854-866, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310609

RESUMO

This paper proposes a high-performance receiver for underwater acoustic communications based on time reversal processing for multiple-input multiple-output (MIMO) systems. The receiver employs the vector approximate message passing (VAMP) algorithm as a soft equalizer in turbo equalization. By performing self-iteration between the inner soft slicer and the inner soft equalizer, the VAMP algorithm achieves near-optimal performance. Furthermore, an iterative channel-estimation-based soft successive interference cancellation method is incorporated to suppress co-channel interference in the MIMO system. Additionally, the introduction of passive time reversal technology can combine multiple channels into a single channel, which greatly reduces the computational complexity of the MIMO system, especially for large MIMO systems. The effectiveness of the proposed receiver is verified using experimental data collected in Songhua Lake, China in 2019. The results demonstrate that the proposed receiver significantly reduces the complexity of the traditional parallel-VAMP receiver without sacrificing performance and outperforms other receivers of the same type. Moreover, our experimental results also verify that the VAMP-turbo outperforms the generalized approximate message passing (GAMP)-turbo in terms of bit error rate and convergence performance.

7.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794021

RESUMO

Indoor distance measurement technology utilizing Zigbee's Received Signal Strength Indication (RSSI) offers cost-effective and energy-efficient advantages, making it widely adopted for indoor distance measurement applications. However, challenges such as multipath effects, signal attenuation, and signal blockage often degrade the accuracy of distance measurements. Addressing these issues, this study proposes a combined filtering approach integrating Kalman filtering, Dixon's Q-test, Gaussian filtering, and mean filtering. Initially, the method evaluates Zigbee's transmission power, channel, and other parameters, analyzing their impact on RSSI values. Subsequently, it fits a signal propagation loss model based on actual measured data to understand the filtering algorithm's effect on distance measurement error. Experimental results demonstrate that the proposed method effectively improves the conversion relationship between RSSI and distance. The average distance measurement error, approximately 0.46 m, substantially outperforms errors derived from raw RSSI data. Consequently, this method offers enhanced distance measurement accuracy, making it particularly suitable for indoor positioning applications.

8.
Mol Cancer ; 22(1): 184, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980532

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system. Angiogenesis is a main contributing factor for tumorigenesis. E74-like transcription factor 5 (ELF5) has been verified to participate in the progression of different cancers and can regulate angiogenesis. This study was aimed to explore the functions of ELF5 in RCC. METHODS: Bioinformatics tools were used to predict the expression of ELF5 in RCC. RT-qPCR was applied for testing ELF5 expression in RCC cells. Cell behaviors were evaluated by colony formation, CCK-8, and transwell assays. The tube formation assay was used for determining angiogenesis. Methylation-specific PCR (MSP) was utilized for measuring the methylation level of ELF5 in RCC cells. ChIP and luciferase reporter assays were applied for assessing the binding of ELF5 and ubiquitin-specific protease 3 (USP3). Co-IP and GST pull-down were utilized for detecting the interaction of WD40 and tetratricopeptide repeats 1 (WDTC1) and USP3. Ubiquitination level of WDTC1 was determined by ubiquitination assay. RESULTS: ELF5 was lowly expressed in RCC cells and tissues. High expression of ELF5 expression notably suppressed RCC cell proliferative, migratory, and invasive capabilities, and inhibited angiogenesis. The tumor growth in mice was inhibited by ELF5 overexpression. ELF5 was highly methylated in RCC samples, and DNA methyltransferases (DNMTs) can promote hypermethylation level of ELF5 in RCC cells. ELF5 was further proved to transcriptionally activate USP3 in RCC. Moreover, USP3 inhibited WDTC1 ubiquitination. ELF5 can promote USP3-mediated WDTC1 stabilization. Additionally, WDTC1 silencing reversed the functions of ELF5 overexpression on RCC progression. CONCLUSION: Downregulation of ELF5 due to DNA hypermethylation inhibits RCC development though the USP3/WDTC1axis in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Animais , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA , Metilação de DNA , Regulação para Baixo , Neoplasias Renais/genética , Neoplasias Renais/patologia , MicroRNAs/genética
10.
Acta Pharmacol Sin ; 44(2): 465-474, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35953645

RESUMO

Survival is one of the most important endpoints in cancer therapy, and parametric survival analysis could comprehensively reveal the overall result of disease progression, drug efficacy, toxicity as well as their interactions. In this study we investigated the efficacy and toxicity of dexamethasone (DEX) combined with gemcitabine (GEM) in pancreatic cancer xenograft. Nude mice bearing SW1990 pancreatic cancer cells derived tumor were treated with DEX (4 mg/kg, i.g.) and GEM (15 mg/kg, i.v.) alone or in combination repeatedly (QD, Q3D, Q7D) until the death of animal or the end of study. Tumor volumes and net body weight (NBW) were assessed every other day. Taking NBW as a systemic safety indicator, an integrated pharmacokinetic/pharmacodynamic (PK/PD) model was developed to quantitatively describe the impact of tumor size and systemic safety on animal survival. The PK/PD models with time course data for tumor size and NBW were established, respectively, in a sequential manner; a parametric time-to-event (TTE) model was also developed based on the longitudinal PK/PD models to describe the survival results of the SW1990 tumor-bearing mice. These models were evaluated and externally validated. Only the mice with good tumor growth inhibition and relatively stable NBW had an improved survival result after DEX and GEM combination therapy, and the simulations based on the parametric TTE model showed that NBW played more important role in animals' survival compared with tumor size. The established model in this study demonstrates that tumor size was not always the most important reason for cancer-related death, and parametric survival analysis together with safety issues was also important in the evaluation of oncology therapies in preclinical studies.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Xenoenxertos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico
11.
Environ Toxicol ; 38(9): 2143-2154, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37283489

RESUMO

Organophosphate pesticides (OPs), which are among the most widely used synthetic chemicals for the control of a wide variety of pests, are however associated with various adverse reactions in animals and humans. Chlorpyrifos, an OP, has been shown to cause various health complications due to ingestion, inhalation, or skin absorption. The mechanisms underlying the adverse effect of chlorpyrifos on neurotoxicity have not been elucidated. Therefore, we aimed to determine the mechanism of chlorpyrifos-induced cytotoxicity and to examine whether the antioxidant vitamin E (VE) ameliorated these cytotoxic effects using DBTRG-05MG, a human glioblastoma cell line. The DBTRG-05MG cells were treated with chlorpyrifos, VE, or chlorpyrifos plus VE and compared with the untreated control cells. Chlorpyrifos induced a significant decrease in cell viability and caused morphological changes in treated cultures. Furthermore, chlorpyrifos led to the increased production of reactive oxygen species (ROS) accompanied by a decrease in the level of reduced glutathione. Additionally, chlorpyrifos induced apoptosis by upregulating the protein levels of Bax and cleaved caspase-9/caspase-3 and by downregulating the protein levels of Bcl-2. Moreover, chlorpyrifos modulated the antioxidant response by increasing the protein levels of Nrf2, HO-1, and NQO1. However, VE reversed the cytotoxicity and oxidative stress induced by chlorpyrifos treatment in DBTRG-05MG cells. Overall, these findings suggest that chlorpyrifos causes cytotoxicity through oxidative stress, a process that may play an important role in the development of chlorpyrifos-associated glioblastoma.


Assuntos
Antioxidantes , Clorpirifos , Inseticidas , Vitamina E , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Apoptose , Clorpirifos/toxicidade , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/farmacologia , Inseticidas/toxicidade , Linhagem Celular Tumoral , Caspase 9/metabolismo , Caspase 3/metabolismo
12.
J Biol Chem ; 296: 100325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33493514

RESUMO

The Golgi apparatus (GA) is a cellular organelle that plays a critical role in the processing of proteins for secretion. Activation of G protein-coupled receptors at the plasma membrane (PM) induces the translocation of G protein ßγ dimers to the GA. However, the functional significance of this translocation is largely unknown. Here, we study PM-GA translocation of all 12 Gγ subunits in response to chemokine receptor CXCR4 activation and demonstrate that Gγ9 is a unique Golgi-translocating Gγ subunit. CRISPR-Cas9-mediated knockout of Gγ9 abolishes activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), two members of the mitogen-activated protein kinase family, by CXCR4. We show that chemically induced recruitment to the GA of Gßγ dimers containing different Gγ subunits activates ERK1/2, whereas recruitment to the PM is ineffective. We also demonstrate that pharmacological inhibition of phosphoinositide 3-kinase γ (PI3Kγ) and depletion of its subunits p110γ and p101 abrogate ERK1/2 activation by CXCR4 and Gßγ recruitment to the GA. Knockout of either Gγ9 or PI3Kγ significantly suppresses prostate cancer PC3 cell migration, invasion, and metastasis. Collectively, our data demonstrate a novel function for Gßγ translocation to the GA, via activating PI3Kγ heterodimers p110γ-p101, to spatiotemporally regulate mitogen-activated protein kinase activation by G protein-coupled receptors and ultimately control tumor progression.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Complexo de Golgi/genética , Receptores CXCR4/genética , Membrana Celular/genética , Dimerização , Células HEK293 , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosfatidilinositol 3-Quinases/genética , Transporte Proteico/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética
13.
J Biol Chem ; 296: 100517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676895

RESUMO

G protein-coupled receptors (GPCRs) are important modulators of synaptic functions. A fundamental but poorly addressed question in neurobiology is how targeted GPCR trafficking is achieved. Rab GTPases are the master regulators of vesicle-mediated membrane trafficking, but their functions in the synaptic presentation of newly synthesized GPCRs are virtually unknown. Here, we investigate the role of Rab43, via dominant-negative inhibition and CRISPR-Cas9-mediated KO, in the export trafficking of α2-adrenergic receptor (α2-AR) and muscarinic acetylcholine receptor (mAChR) in primary neurons and cells. We demonstrate that Rab43 differentially regulates the overall surface expression of endogenous α2-AR and mAChR, as well as their signaling, in primary neurons. In parallel, Rab43 exerts distinct effects on the dendritic and postsynaptic transport of specific α2B-AR and M3 mAChR subtypes. More interestingly, the selective actions of Rab43 toward α2B-AR and M3 mAChR are neuronal cell specific and dictated by direct interaction. These data reveal novel, neuron-specific functions for Rab43 in the dendritic and postsynaptic targeting and sorting of GPCRs and imply multiple forward delivery routes for different GPCRs in neurons. Overall, this study provides important insights into regulatory mechanisms of GPCR anterograde traffic to the functional destination in neurons.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transmissão Sináptica , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Células HEK293 , Humanos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Proteínas rab de Ligação ao GTP/genética
14.
Clin Gastroenterol Hepatol ; 20(12): 2826-2837.e9, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34902570

RESUMO

BACKGROUND & AIMS: Data on long-term tenofovir alafenamide (TAF) therapy for pregnant women with active chronic hepatitis B (CHB) (immune clearance and reactivation phases, currently and previously diagnosed) and their infants are lacking. METHODS: Pregnant women with active CHB treated with TAF and tenofovir disoproxil fumarate (TDF) were enrolled in this multicenter prospective study, and infants received immunoprophylaxis. The primary outcomes were rates of adverse (safety) events in pregnant women and defects in infants and fetuses. The secondary outcomes were virologic responses in pregnant women, infants' safety, hepatitis B surface antigen (HBsAg) status, and growth conditions. RESULTS: One hundred three and 104 pregnant women were enrolled and 102 and 104 infants were born in the TAF and TDF groups, respectively. In the TAF group, the mean age, gestational age, alanine aminotransferase level, and viral loads at treatment initiation were 29.3 years, 1.3 weeks, 122.2 U/L, and 5.1 log10 IU/mL, respectively. TAF was well-tolerated, and the most common adverse event was nausea (29.1%) during a mean of 2 years of treatment. Notably, 1 (1.0%) TAF-treated pregnant woman underwent induced abortion due to noncausal fetal cleft lip and palate. No infants in either group had birth defects. In the TAF group, the hepatitis B e antigen seroconversion rate was 20.7% at postpartum month 6, infants had normal growth parameters, and no infants were positive for HBsAg at 7 months. The TDF group had comparable safety and effectiveness profiles. CONCLUSIONS: TAF administered throughout or beginning in early pregnancy is generally safe and effective for pregnant women with active CHB and their infants.


Assuntos
Fenda Labial , Fissura Palatina , Hepatite B Crônica , Hepatite B , Feminino , Humanos , Gravidez , Recém-Nascido , Adulto , Antígenos de Superfície da Hepatite B , Hepatite B Crônica/tratamento farmacológico , Gestantes , Estudos Prospectivos , Fenda Labial/induzido quimicamente , Fenda Labial/tratamento farmacológico , Fissura Palatina/induzido quimicamente , Fissura Palatina/tratamento farmacológico , Tenofovir/efeitos adversos , Adenina/efeitos adversos , China , Antivirais/efeitos adversos , Hepatite B/diagnóstico
15.
Small ; 18(22): e2107659, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521934

RESUMO

The recent legalization of cannabidiol (CBD) to treat neurological conditions such as epilepsy has sparked rising interest across global pharmaceuticals and synthetic biology industries to engineer microbes for sustainable synthetic production of medicinal CBD. Since the process involves screening large amounts of samples, the main challenge is often associated with the conventional screening platform that is time consuming, and laborious with high operating costs. Here, a portable, high-throughput Aptamer-based BioSenSing System (ABS3 ) is introduced for label-free, low-cost, fully automated, and highly accurate CBD concentrations' classification in a complex biological environment. The ABS3 comprises an array of interdigitated microelectrode sensors, each functionalized with different engineered aptamers. To further empower the functionality of the ABS3 , unique electrochemical features from each sensor are synergized using physics-guided multidimensional analysis. The capabilities of this ABS3 are demonstrated by achieving excellent CBD concentrations' classification with a high prediction accuracy of 99.98% and a fast testing time of 22 µs per testing sample using the optimized random forest (RF) model. It is foreseen that this approach will be the key to the realistic transformation from fundamental research to system miniaturization for diagnostics of disease biomarkers and drug development in the field of chemical/bioanalytics.


Assuntos
Canabidiol , Canabidiol/uso terapêutico , Ensaios de Triagem em Larga Escala , Aprendizado de Máquina , Nucleotídeos , Física
16.
Chem Res Toxicol ; 35(5): 880-889, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35511042

RESUMO

Bioallethrin belongs to the family of pyrethroid insecticides. Previous studies have shown that bioallethrin affected the function of muscarinic receptor and subsequently induced neurotoxicity in different brain models. Reactive oxygen species (ROS) are generated in the metabolic course of the human body, which can cause human damage when overactivated. However, whether bioallethrin evokes cytotoxicity through ROS signaling and whether the antioxidant Vitamin E (VE) protects these cytotoxic responses in human glial cell model are still elusive. This study investigated the effect of bioallethrin on cytotoxicity through ROS signaling and evaluated the protective effect of the antioxidant VE in DBTRG-05MG human glioblastoma cells. The cell counting kit-8 (CCK-8) was used to measure cell viability. Intracellular ROS and glutathione (GSH) levels were measured by a cellular assay kit. The levels of apoptosis- and antioxidant-related protein were analyzed by Western blotting. In DBTRG-05MG cells, bioallethrin (25-75 µM) concentration-dependently induced cytotoxicity by increasing ROS productions, decreasing GSH contents, and regulating protein expressions related to apoptosis or antioxidation. Furthermore, these cytotoxic effects were partially reversed by VE (20 µM) pretreatment. Together, VE partially lessened bioallethrin-induced apoptosis through oxidative stress in DBTRG-05MG cells. The data assist us in identifying the toxicological mechanism of bioallethrin and offer future development of the antioxidant VE to reduce brain damage caused by bioallethrin.


Assuntos
Antineoplásicos , Glioblastoma , Piretrinas , Aletrinas , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Apoptose , Sobrevivência Celular , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Estresse Oxidativo , Piretrinas/uso terapêutico , Piretrinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Vitamina E/farmacologia
17.
Inorg Chem ; 61(18): 7165-7172, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35465676

RESUMO

The electrocatalytic nitrogen reduction reaction (ECNRR) is a sustainable and environmentally friendly method for NH3 synthesis under environmental conditions relative to the Haber-Bosch process; however, its low selectivity (Faradaic efficiency (FE)) and low NH3 yield impede the progress. Herein, benefiting from the application of the interface engineering strategy, a multicomponent TiO2/Ag/Cu7S4@Se-CC heterogeneous electrocatalyst with a unique structure was successfully fabricated, generating a unique sandwich structure by using a Ag layer as an electric bridge intercalated between TiO2 and Cu7S4, in which the optimized catalyst can accelerate the electron transfer efficiency. Moreover, through the electronic structure adjustment, an electron-deficient region was constructed, which can inhibit the H2 adsorption but enhance the N2 adsorption, thereby improving the selectivity and the catalytic activity. Significantly, the FE and NH3 yield of TiO2/Ag/Cu7S4@Se-CC reached 51.05 ± 0.16% and 39.16 ± 2.31 µg h-1 cm-2, in which the FE is among the highest non-precious metal-based NRR electrocatalysts in alkaline electrolytes reported. This study provides insight into the rational design and construction of NRR electrocatalysts for electrocatalytic applications.

18.
Jpn J Clin Oncol ; 52(5): 466-474, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35062024

RESUMO

BACKGROUND: Malnutrition is common in colorectal cancer patients. Malnutrition is recognized as a risk factor for adverse postoperative outcomes, yet there are no consistent diagnostic criteria for it. Thus, the Global Leadership Initiative on Malnutrition published new universal criteria. We aimed to investigate the prevalence of malnutrition with the application of Global Leadership Initiative on Malnutrition criteria, and explore the correlations between Global Leadership Initiative on Malnutrition-defined malnutrition and postoperative clinical outcomes in colorectal cancer patients. METHODS: We included a cohort of 918 patients who underwent radical resection surgery for colorectal cancer from July 2014 to October 2019. Malnutrition was diagnosed based on the Global Leadership Initiative on Malnutrition criteria. The associations between nutritional status and postoperative clinical outcomes were analyzed by the Kaplan-Meier method, logistic and Cox regression analyses. RESULTS: Among the included patients, 23.6% were diagnosed as malnutrition based on Global Leadership Initiative on Malnutrition criteria. Global Leadership Initiative on Malnutrition-defined malnutrition was associated with total postoperative complications [odds ratio: 1.497 (1.042-2.152), P = 0.029]. Further, Global Leadership Initiative on Malnutrition-diagnosed malnutrition was an independent risk factor for overall survival [hazard ratio: 1.647 (1.048-2.587), P = 0.030] and disease-free survival [hazard ratio: 1.690 (1.169-2.441), P = 0.005]. CONCLUSIONS: The Global Leadership Initiative on Malnutrition criteria is effective to assess malnutrition. Preoperative malnutrition is associated with postoperative complications, overall survival and disease-free survival in colorectal cancer patients after radical resection surgery.


Assuntos
Neoplasias Colorretais , Desnutrição , Neoplasias Colorretais/complicações , Neoplasias Colorretais/cirurgia , Humanos , Liderança , Desnutrição/complicações , Avaliação Nutricional , Estado Nutricional , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia
19.
Acta Pharmacol Sin ; 43(4): 1001-1012, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34183757

RESUMO

Breast cancer is the second leading cause of cancer-related mortality in women, mainly due to metastasis, which is strongly associated with cancer stemness. Our previous studies showed that the eradication of cancer stem-like cells (CSCs) may be related to the activation of dopamine D1 receptor (D1DR). This study aimed to explicitly demonstrate the target-role of D1DR activation in antimetastatic therapy and to investigate the potential efficacy and the underlying D1DR-related mechanisms of QAP14, a new oral compound. 4T1, MDA-MB-231, and D1DR-knockout 4T1 (4T1-D1DR) cells were selected for in vitro study, while 4T1 and 4T1-D1DR cells were further used to establish a mouse allograft model for in vivo study. Our results showed that D1DR is abundantly expressed in both 4T1 and MDA-MB-231 cells and that knocking out D1DR in 4T1 cells accelerated migration and invasion in vitro as well as lung metastasis in vivo. QAP14 inhibited colony formation, cell motility, mammosphere formation and CSC frequency, induced CSC apoptosis and D1DR expression, and increased cAMP/cGMP levels. Additionally, QAP14 showed inhibitory effects on tumor growth and lung metastasis with acceptable safety in vivo. Knocking out D1DR almost completely abolished the efficacy, confirming that QAP14 exhibits its anti-CSC and antimetastatic effects through D1DR activation. The underlying mechanisms involved suppression of the nuclear factor κB (NF-κB)/protein kinase B (Akt) pathway and consequent downregulation of both epithelial-to-mesenchymal transition (EMT) process and cancer stemness. In summary, our findings suggest a potential candidate compound, QAP14, as well as a potential target, D1DR, for metastatic breast cancer therapy.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Células-Tronco Neoplásicas , Receptores de Dopamina D1/metabolismo
20.
Neoplasma ; 69(4): 886-898, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35603954

RESUMO

Tertiary lymphoid structures (TLS) are lymphoid aggregates in tumor tissues and their potential significance in clinical applications has not been fully elucidated in gastric cancer. We evaluated TLS and tumor-infiltrating immune cells using H&E and immunohistochemistry staining in the recruited patients with gastric cancer. The prognostic value of TLS was evaluated by Kaplan-Meier analysis and further validated using gene expression profiling. The alterations in gene mutation, copy number variance, and DNA methylation across the TLS signature subtypes were analyzed based on the Cancer Genome Atlas cohort. High TLS density was associated with improved overall survival and disease-free survival. A combination of TLS density and TNM stage obtained higher prognostic accuracy than the TNM stage alone. Tumors with high TLS density showed significantly higher infiltration of CD3+, CD8+, and CD20+ cells but lower infiltration of CD68+ cells. Transcriptomics analysis demonstrated that high TLS signature status was positively associated with the activation of inflammation-related and immune-related pathways. Multi-omics data showed a distinct landscape of somatic mutations, copy number variants, and DNA methylation across TLS signature subtypes. Our results indicated that TLS might link with enhanced immune responses, and represent an independent and beneficial predictor of resected gastric cancer. Multi-omics analysis further revealed key tumor-associated molecular alterations across TLS signature subtypes, which might help explore the potential mechanism of the interaction between TLS formation and cancer cells.


Assuntos
Neoplasias Gástricas , Estruturas Linfoides Terciárias , Intervalo Livre de Doença , Humanos , Linfócitos do Interstício Tumoral , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Estruturas Linfoides Terciárias/genética , Estruturas Linfoides Terciárias/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA