Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Brain Behav Immun ; 117: 242-254, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281671

RESUMO

Intestinal γδ T cells play an important role in shaping the gut microbiota, which is critical not only for maintaining intestinal homeostasis but also for controlling brain function and behavior. Here, we found that mice deficient for γδ T cells (γδ-/-) developed an abnormal pattern of repetitive/compulsive (R/C) behavior, which was dependent on the gut microbiota. Colonization of WT mice with γδ-/- microbiota induced R/C behavior whereas colonization of γδ-/- mice with WT microbiota abolished the R/C behavior. Moreover, γδ-/- mice had elevated levels of the microbial metabolite 3-phenylpropanoic acid in their cecum, which is a precursor to hippurate (HIP), a metabolite we found to be elevated in the CSF. HIP reaches the striatum and activates dopamine type 1 (D1R)-expressing neurons, leading to R/C behavior. Altogether, these data suggest that intestinal γδ T cells shape the gut microbiota and their metabolites and prevent dysfunctions of the striatum associated with behavior modulation.


Assuntos
Microbioma Gastrointestinal , Hipuratos , Linfócitos T , Animais , Camundongos , Corpo Estriado , Neurônios , Comportamento Compulsivo
2.
Adv Tech Stand Neurosurg ; 49: 291-306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700689

RESUMO

Pediatric epilepsy has a worldwide prevalence of approximately 1% (Berg et al., Handb Clin Neurol 111:391-398, 2013) and is associated with not only lower quality of life but also long-term deficits in executive function, significant psychosocial stressors, poor cognitive outcomes, and developmental delays (Schraegle and Titus, Epilepsy Behav 62:20-26, 2016; Puka and Smith, Epilepsia 56:873-881, 2015). With approximately one-third of patients resistant to medical control, surgical intervention can offer a cure or palliation to decrease the disease burden and improve neurological development. Despite its potential, epilepsy surgery is drastically underutilized. Even today only 1% of the millions of epilepsy patients are referred annually for neurosurgical evaluation, and the average delay between diagnosis of Drug Resistant Epilepsy (DRE) and surgical intervention is approximately 20 years in adults and 5 years in children (Solli et al., Epilepsia 61:1352-1364, 2020). It is still estimated that only one-third of surgical candidates undergo operative intervention (Pestana Knight et al., Epilepsia 56:375, 2015). In contrast to the stable to declining rates of adult epilepsy surgery (Englot et al., Neurology 78:1200-1206, 2012; Neligan et al., Epilepsia 54:e62-e65, 2013), rates of pediatric surgery are rising (Pestana Knight et al., Epilepsia 56:375, 2015). Innovations in surgical approaches to epilepsy not only minimize potential complications but also expand the definition of a surgical candidate. In this chapter, three alternatives to classical resection are presented. First, laser ablation provides a minimally invasive approach to focal lesions. Next, both central and peripheral nervous system stimulation can interrupt seizure networks without creating permanent lesions. Lastly, focused ultrasound is discussed as a potential new avenue not only for ablation but also modulation of small, deep foci within seizure networks. A better understanding of the potential surgical options can guide patients and providers to explore all treatment avenues.


Assuntos
Epilepsia , Procedimentos Neurocirúrgicos , Criança , Humanos , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia/cirurgia , Terapia a Laser/métodos , Procedimentos Neurocirúrgicos/métodos
3.
Childs Nerv Syst ; 40(8): 2367-2372, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38856743

RESUMO

INTRODUCTION: Outcomes for pineal region and superior cerebellar tumors in young children often hinge on extent of microsurgical resection, and thus choosing an approach that provides adequate visualization of pathology is essential. The occipital interhemispheric transtentorial (OITT) approach provides excellent exposure while minimizing cerebellar retraction. However, this approach has not been widely accepted as a viable option for very young children due to concerns for potential blood loss when incising the tentorium. The aim of this paper is to characterize our recent institutional experience with the occipital interhemispheric transtentorial approach (OITT) for tumor resection in infants and toddlers. METHODS: A retrospective study was performed between 2016 and 2023 of pediatric patients less than 36 months of age who underwent OITT for tumor resection at a high-volume referral center. Patients with at least 3 months of postoperative follow-up and postoperative MRI were included. Primary outcomes included extent of resection, intraoperative and postoperative complications, and neurologic outcome. Secondary outcomes included length of stay and estimated blood loss. RESULTS: Eight patients, five male, were included. The median age at the time of surgery was 10 months (range 5-36 months). Presenting symptoms included macrocephaly, nausea/vomiting, strabismus, gait instability, or milestone regression. Hydrocephalus was present preoperatively in all patients. Average tumor volume was 38.6 cm3, ranging from 1.3 to 71.9 cm3. All patients underwent an OITT approach for tumor resection with stereotactic guidance. No intraoperative complications occurred, and no permanent neurologic deficits developed postoperatively. Gross total resection was achieved in all cases per postoperative MRI report, and no instances of new cerebellar, brainstem, or occipital lobe ischemia were noted. CONCLUSIONS: OITT approach for tumor resection in very young children (≤ 36 months) is an effective strategy with an acceptable safety profile. In our series, no significant intraoperative or postoperative complications occurred. To our knowledge, this is the first report describing this technique specifically in patients less than 36 months of age.


Assuntos
Procedimentos Neurocirúrgicos , Complicações Pós-Operatórias , Humanos , Lactente , Masculino , Feminino , Estudos Retrospectivos , Pré-Escolar , Procedimentos Neurocirúrgicos/métodos , Complicações Pós-Operatórias/etiologia , Resultado do Tratamento , Neoplasias Cerebelares/cirurgia , Neoplasias Encefálicas/cirurgia , Pinealoma/cirurgia
4.
Neurosurg Focus Video ; 11(1): V8, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957428

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder. Tubers of the central nervous system are a hallmark of the disorder and often cause epilepsy. Many TSC patients fail to achieve seizure control with medication alone. Several case series have demonstrated high seizure freedom rates after resective surgery. However, the technique for the resection of epileptogenic tubers has largely been unreported. Here the authors present 2 cases to illustrate their multistage approach for localizing and resecting the seizure onset zone in patients with TSC. At their institution, they have excellent seizure outcomes and a low complication rate with this technique. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID2411.

5.
J Clin Neurophysiol ; 41(5): 405-409, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935653

RESUMO

PURPOSE: Stereoelectroencephalography (SEEG) is widely performed on individuals with medically refractory epilepsy for whom invasive seizure localization is desired. Despite increasing adoption in many centers across the world, no standardized electrode naming convention exists, generating confusion among both clinical and research teams. METHODS: We have developed a novel nomenclature, named the Standardized Electrode Nomenclature for SEEG Applications system. Concise, unique, informative, and unambiguous labels provide information about entry point, deep targets, and relationships between electrodes. Inter-rater agreement was evaluated by comparing original electrode names from 10 randomly sampled cases (including 136 electrodes) with those prospectively assigned by four additional blinded raters. RESULTS: The Standardized Electrode Nomenclature for SEEG Application system was prospectively implemented in 40 consecutive patients undergoing SEEG monitoring at our institution, creating unique electrode names in all cases, and facilitating implantation design, SEEG recording and mapping interpretation, and treatment planning among neurosurgeons, neurologists, and neurophysiologists. The inter-rater percent agreement for electrode names among two neurosurgeons, two epilepsy neurologists, and one neurosurgical fellow was 97.5%. CONCLUSIONS: This standardized naming convention, Standardized Electrode Nomenclature for SEEG Application, provides a simple, concise, reproducible, and informative method for specifying the target(s) and relative position of each SEEG electrode in each patient, allowing for successful sharing of information in both the clinical and research settings. General adoption of this nomenclature could pave the way for improved communication and collaboration between institutions.


Assuntos
Eletrodos Implantados , Eletroencefalografia , Técnicas Estereotáxicas , Terminologia como Assunto , Humanos , Eletroencefalografia/normas , Eletroencefalografia/métodos , Técnicas Estereotáxicas/normas , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Feminino , Masculino , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/classificação
6.
bioRxiv ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38853824

RESUMO

Recent findings indicate a correlation between the peripheral adaptive immune system and neuroinflammation in Alzheimer's disease (AD). To characterize the composition of adaptive immune cells in the peripheral blood of AD patients, we utilized single-cell mass cytometry (CyTOF) to profile peripheral blood mononuclear cells (PBMCs). Concurrently, we assessed the concentration of proteins associated with AD and neuroinflammation in the plasma of the same subjects. We found that the abundance of proinflammatory CXCR3 + CD127 + Type 1 T helper (Th1) cells in AD patients was negatively correlated with the abundance of neurofilament light chain (NfL) protein. This correlation is apolipoprotein E (ApoE) ε4-dependent. Analyzing public single-cell RNA-sequencing (scRNA-seq) data, we found that, contrary to the scenario in the peripheral blood, the cell frequency of CXCR3 + CD127 + Th1 cells in the cerebrospinal fluid (CSF) of AD patients was increased compared to healthy controls (HCs). Moreover, the proinflammatory capacity of CXCR3 + CD127 + Th1 cells in the CSF of AD patients was further increased compared to HCs. These results reveal an association of a peripheral T-cell change with neuroinflammation in AD and suggest that dysregulation of peripheral adaptive immune responses, particularly involving CXCR3 + CD127 + Th1 cells, may potentially be mediated by factors such as ApoE ε4 genotype. One sentence summary: An apolipoprotein E (ApoE) ε4-dependent alteration of CD4 T cell subpopulation in peripheral blood is associated with neuroinflammation in patients with Alzheimer's disease.

7.
Clin Nucl Med ; 49(6): 491-499, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630948

RESUMO

PURPOSE OF THE REPORT: 18 F-PBR06-PET targeting 18-kDa translocator protein can detect abnormal microglial activation (MA) in multiple sclerosis (MS). The objectives of this study are to develop individualized mapping of MA using 18 F-PBR06, to determine the effect of disease-modifying treatment (DMT) efficacy on reducing MA, and to determine its clinical, radiological, and serological correlates in MS patients. PATIENTS AND METHODS: Thirty 18 F-PBR06-PET scans were performed in 22 MS patients (mean age, 46 ± 13 years; 16 females) and 8 healthy controls (HCs). Logarithmically transformed "glial activity load on PET" scores (calculated as the sum of voxel-by-voxel z -scores ≥4), "lnGALP," were compared between MS and HC and between MS subjects on high-efficacy DMTs (H-DMT, n = 13) and those on no or lower-efficacy treatment, and correlated with clinical measures, serum biomarkers, and cortical thickness. RESULTS: Cortical gray matter (CoGM) and white matter (WM) lnGALP scores were higher in MS versus HC (+33% and +48%, P < 0.001). In H-DMT group, CoGM and WM lnGALP scores were significantly lower than lower-efficacy treatment ( P < 0.01) but remained abnormally higher than in HC group ( P = 0.006). Within H-DMT patients, CoGM lnGALP scores correlated positively with physical disability, fatigue and serum glial fibrillary acid protein levels ( r = 0.65-0.79, all P 's < 0.05), and inversely with cortical thickness ( r = -0.66, P < 0.05). CONCLUSIONS: High-efficacy DMTs decrease, but do not normalize, CoGM and WM MA in MS patients. Such "residual" MA in CoGM is associated with clinical disability, serum biomarkers, and cortical degeneration. Individualized mapping of translocator protein PET using 18 F-PBR06 is clinically feasible and can potentially serve as an imaging biomarker for evaluating "smoldering" inflammation in MS patients.


Assuntos
Inflamação , Esclerose Múltipla , Neuroglia , Tomografia por Emissão de Pósitrons , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/sangue , Inflamação/diagnóstico por imagem , Neuroglia/metabolismo , Adulto
8.
Front Immunol ; 15: 1360219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745667

RESUMO

Background: Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods: FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results: TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion: These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.


Assuntos
Linfócitos B Reguladores , Receptor Celular 1 do Vírus da Hepatite A , Receptores Imunológicos , Humanos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/genética , Feminino , Masculino , Adulto , Células B de Memória/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Citocinas/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Ativação Linfocitária/imunologia , Pessoa de Meia-Idade , Células Cultivadas , Diferenciação Celular/imunologia , Memória Imunológica
9.
Pediatr Infect Dis J ; 43(8): e261-e267, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621168

RESUMO

BACKGROUND: The Streptococcus anginosus group (SAG) pathogens have the potential to cause head and neck space infections, including intracranial abscesses. Several centers noted an increase in intracranial abscesses in children during the SARS-CoV-2 pandemic, prompting a Centers for Disease Control and Prevention health alert in May 2022. We examined the epidemiology of pediatric intracranial abscesses at a tertiary care center with a focus on SAG pre- and post-pandemic. METHODS: Cases of intracranial abscesses of any microbiologic etiology admitted from January 2011 to December 2022 were identified using International Classification of Diseases 10 codes. Subjects were cross-referenced with culture results from the microbiology laboratory at Texas Children's Hospital. Cases included were those associated with either otitis media, mastoiditis or sinusitis and medical records were reviewed. RESULTS: A total of 157 cases were identified and 59.9% (n = 94) were caused by SAG. The incidence of all sinogenic/otogenic intracranial infections ( P = 0.002), and SAG-specific infections ( P = 0.004), increased from 2011 to 2022. SAG infection was more often associated with multiple surgeries, and these subjects were more likely to require craniotomy or craniectomy. Among sinogenic abscesses, S. intermedius was the most common pathogen, while among otogenic cases, S. pyogenes predominated. From March 2020 to Dec 2022, 9/49 cases tested positive for SARS-CoV-2 (18.4%); characteristics of infection were not significantly different among cases with and without SARS-CoV-2. CONCLUSIONS: Over the last decade, intracranial complications of sinusitis/otitis have been increasing, specifically those caused by SAG; this trend, however, predated the SARS-CoV-2 pandemic. SAG was associated with a greater need for surgical intervention, specifically neurosurgery. Further work is necessary to determine the cause for these rising infections.


Assuntos
Abscesso Encefálico , COVID-19 , Mastoidite , Otite Média , Sinusite , Infecções Estreptocócicas , Streptococcus anginosus , Humanos , Mastoidite/epidemiologia , Mastoidite/microbiologia , Criança , Feminino , Masculino , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Pré-Escolar , Incidência , Sinusite/microbiologia , Sinusite/epidemiologia , Streptococcus anginosus/isolamento & purificação , Lactente , Otite Média/epidemiologia , Otite Média/microbiologia , Abscesso Encefálico/microbiologia , Abscesso Encefálico/epidemiologia , COVID-19/epidemiologia , COVID-19/complicações , Adolescente , Texas/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos
10.
Nat Commun ; 15(1): 3872, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719797

RESUMO

The gut microbiota and microglia play critical roles in Alzheimer's disease (AD), and elevated Bacteroides is correlated with cerebrospinal fluid amyloid-ß (Aß) and tau levels in AD. We hypothesize that Bacteroides contributes to AD by modulating microglia. Here we show that administering Bacteroides fragilis to APP/PS1-21 mice increases Aß plaques in females, modulates cortical amyloid processing gene expression, and down regulates phagocytosis and protein degradation microglial gene expression. We further show that administering Bacteroides fragilis to aged wild-type male and female mice suppresses microglial uptake of Aß1-42 injected into the hippocampus. Depleting murine Bacteroidota with metronidazole decreases amyloid load in aged 5xFAD mice, and activates microglial pathways related to phagocytosis, cytokine signaling, and lysosomal degradation. Taken together, our study demonstrates that members of the Bacteroidota phylum contribute to AD pathogenesis by suppressing microglia phagocytic function, which leads to impaired Aß clearance and accumulation of amyloid plaques.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia , Fagocitose , Placa Amiloide , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Feminino , Camundongos , Masculino , Bacteroides fragilis/metabolismo , Microbioma Gastrointestinal , Humanos , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/patologia
11.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798574

RESUMO

When we speak, we not only make movements with our mouth, lips, and tongue, but we also hear the sound of our own voice. Thus, speech production in the brain involves not only controlling the movements we make, but also auditory and sensory feedback. Auditory responses are typically suppressed during speech production compared to perception, but how this manifests across space and time is unclear. Here we recorded intracranial EEG in seventeen pediatric, adolescent, and adult patients with medication-resistant epilepsy who performed a reading/listening task to investigate how other auditory responses are modulated during speech production. We identified onset and sustained responses to speech in bilateral auditory cortex, with a selective suppression of onset responses during speech production. Onset responses provide a temporal landmark during speech perception that is redundant with forward prediction during speech production. Phonological feature tuning in these "onset suppression" electrodes remained stable between perception and production. Notably, the posterior insula responded at sentence onset for both perception and production, suggesting a role in multisensory integration during feedback control.

12.
Genome Med ; 16(1): 94, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085949

RESUMO

BACKGROUND: Previous studies have identified a diverse group of microbial taxa that differ between patients with multiple sclerosis (MS) and the healthy population. However, interpreting findings on MS-associated microbiota is challenging, as there is no true consensus. It is unclear whether there is gut microbiota commonly altered in MS across studies. METHODS: To answer this, we performed a meta-analysis based on the 16S rRNA gene sequencing data from seven geographically and technically diverse studies comprising a total of 524 adult subjects (257 MS and 267 healthy controls). Analysis was conducted for each individual study after reprocessing the data and also by combining all data together. The blocked Wilcoxon rank-sum test and linear mixed-effects regression were used to identify differences in microbial composition and diversity between MS and healthy controls. Network analysis was conducted to identify bacterial correlations. A leave-one-out sensitivity analysis was performed to ensure the robustness of the findings. RESULTS: The microbiome community structure was significantly different between studies. Re-analysis of data from individual studies revealed a lower relative abundance of Prevotella in MS across studies, compared to controls. Meta-analysis found that although alpha and beta diversity did not differ between MS and controls, a higher abundance of Actinomyces and a lower abundance of Faecalibacterium were reproducibly associated with MS. Additionally, network analysis revealed that the recognized negative Bacteroides-Prevotella correlation in controls was disrupted in patients with MS. CONCLUSIONS: Our meta-analysis identified common gut microbiota associated with MS across geographically and technically diverse studies.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , RNA Ribossômico 16S , Humanos , Esclerose Múltipla/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Bactérias/classificação , Adulto , Masculino , Feminino , Estudos de Casos e Controles
13.
Mucosal Immunol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925529

RESUMO

Dietary proteins are taken up by intestinal dendritic cells (DCs), cleaved into peptides, loaded to major histocompatibility complexes, and presented to T cells to generate an immune response. Amino acid (AA)-diets do not have the same effects because AAs cannot bind to major histocompatibility complex to activate T cells. Here, we show that impairment in regulatory T cell generation and loss of tolerance in mice fed a diet lacking whole protein is associated with major transcriptional changes in intestinal DCs including downregulation of genes related to DC maturation, activation and decreased gene expression of immune checkpoint molecules. Moreover, the AA-diet had a profound effect on microbiome composition, including an increase in Akkermansia muciniphilia and Oscillibacter and a decrease in Lactococcus lactis and Bifidobacterium. Although microbiome transfer experiments showed that AA-driven microbiome modulates intestinal DC gene expression, most of the unique transcriptional change in DC was linked to the absence of whole protein in the diet. Our findings highlight the importance of dietary proteins for intestinal DC function and mucosal tolerance.

14.
J Neurosurg Pediatr ; 33(6): 516-523, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552237

RESUMO

OBJECTIVE: Patients who experience postoperative pediatric cerebellar mutism syndrome (CMS) during treatment for medulloblastoma have long-term deficits in neurocognitive functioning; however, the consequences on functional or adaptive outcomes are unknown. The purpose of the present study was to compare adaptive, behavioral, and emotional functioning between survivors with and those without a history of CMS. METHODS: The authors examined outcomes in 45 survivors (15 with CMS and 30 without CMS). Comprehensive neuropsychological evaluations, which included parent-report measures of adaptive, behavioral, and emotional functioning, were completed at a median of 2.90 years following craniospinal irradiation. RESULTS: Adaptive functioning was significantly worse in the CMS group for practical and general adaptive skills compared with the group without CMS. Rates of impairment in practical, conceptual, and general adaptive skills in the CMS group exceeded expected rates in the general population. Despite having lower overall intellectual functioning, working memory, and processing speed, IQ and related cognitive processes were uncorrelated with adaptive outcomes in the CMS group. No significant group differences or increased rates of impairment were observed for behavioral and emotional outcomes. CONCLUSIONS: Survivors with CMS, compared with those without CMS, are rated as having significant deficits in overall or general adaptive functioning, with specific weakness in practical skills several years posttreatment. Findings from this study demonstrate the high risk for ongoing functional deficits despite acute recovery from symptoms of CMS, highlighting the need for intervention to mitigate such risk.


Assuntos
Adaptação Psicológica , Neoplasias Cerebelares , Meduloblastoma , Mutismo , Humanos , Meduloblastoma/cirurgia , Meduloblastoma/radioterapia , Meduloblastoma/psicologia , Meduloblastoma/complicações , Masculino , Feminino , Criança , Mutismo/etiologia , Mutismo/psicologia , Neoplasias Cerebelares/cirurgia , Neoplasias Cerebelares/psicologia , Neoplasias Cerebelares/radioterapia , Neoplasias Cerebelares/complicações , Adolescente , Emoções , Testes Neuropsicológicos , Complicações Pós-Operatórias/psicologia , Complicações Pós-Operatórias/etiologia , Pré-Escolar
15.
Nat Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961225

RESUMO

APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFß and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.

16.
Brain Commun ; 6(4): fcae147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045090

RESUMO

The associations between human concussions and subsequent sequelae of chronic neuropsychiatric and cardiovascular diseases such as hypertension have been reported; however, little is known about the underlying biological processes. We hypothesized that dietary changes, including a high-salt diet, disrupt the bidirectional gut-brain axis, resulting in worsening neuroinflammation and emergence of cardiovascular and behavioural phenotypes in the chronic period after repetitive closed head injury in adolescent mice. Adolescent mice were subjected to three daily closed head injuries, recovered for 12 weeks and then maintained on a high-salt diet or a normal diet for an additional 12 weeks. Experimental endpoints were haemodynamics, behaviour, microglial gene expression (bulk RNA sequencing), brain inflammation (brain tissue quantitative PCR) and microbiome diversity (16S RNA sequencing). High-salt diet did not affect systemic blood pressure or heart rate in sham or injured mice. High-salt diet increased anxiety-like behaviour in injured mice compared to sham mice fed with high-salt diet and injured mice fed with normal diet. Increased anxiety in injured mice that received a high-salt diet was associated with microgliosis and a proinflammatory microglial transcriptomic signature, including upregulation in interferon-gamma, interferon-beta and oxidative stress-related pathways. Accordingly, we found upregulation of tumour necrosis factor-alpha and interferon-gamma mRNA in the brain tissue of high salt diet-fed injured mice. High-salt diet had a larger effect on the gut microbiome composition than repetitive closed head injury. Increases in gut microbes in the families Lachnospiraceae, Erysipelotrichaceae and Clostridiaceae were positively correlated with anxiety-like behaviours. In contrast, Muribaculaceae, Acholeplasmataceae and Lactobacillaceae were negatively correlated with anxiety in injured mice that received a high-salt diet, a time-dependent effect. The findings suggest that high-salt diet, administered after a recovery period, may affect neurologic outcomes following mild repetitive head injury, including the development of anxiety. This effect was linked to microbiome dysregulation and an exacerbation of microglial inflammation, which may be physiological targets to prevent behavioural sequelae in the chronic period after mild repetitive head injury. The data suggest an important contribution of diet in determining long-term outcomes after mild repetitive head injury.

17.
Front Cell Neurosci ; 17: 1322325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162004

RESUMO

The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA