Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(10): 4166-4186, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772558

RESUMO

Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron-exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression.


Assuntos
Eucariotos , Evolução Molecular , Eucariotos/genética , Genoma Fúngico , Íntrons/genética , Filogenia
2.
Curr Biol ; 33(1): 189-196.e4, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36543167

RESUMO

Spliceosomal introns, which interrupt nuclear genes, are ubiquitous features of eukaryotic nuclear genes.1 Spliceosomal intron evolution is complex, with different lineages ranging from virtually zero to thousands of newly created introns.2,3,4,5 This punctate phylogenetic distribution could be explained if intron creation is driven by specialized transposable elements ("Introners"), with Introner-containing lineages undergoing frequent intron gain.6,7,8,9,10 Fragmentation of nuclear genes by spliceosomal introns reaches its apex in dinoflagellates, which have some twenty introns per gene11,12; however, little is known about dinoflagellate intron evolution. We reconstructed intron evolution in five dinoflagellate genomes, revealing a dynamic history of intron gain. We find evidence for historical creation of introns in all five species and identify recently active Introners in 4/5 studied species. In one species, Polarella glacialis, we find an unprecedented diversity of Introners, with recent Introner insertion leading to creation of some 12,253 introns, and with 15 separate families of Introners accounting for at least 100 introns each. These Introner families show diverse mechanisms of moblization and intron creation. Comparison within and between Introner families provides evidence that biases in the so-called intron phase, intron position relative to codon periodicity, could be driven by Introner insertion site requirements.9,13,14 Finally, we report additional transformations of the spliceosomal system in dinoflagellates, including widespread loss of ancestral introns, and novelties of tolerated and favored donor sequence motifs. These results reveal unappreciated diversity of intron-creating elements and spliceosomal evolutionary capacity and highlight the complex evolutionary dependencies shaping genome structures.


Assuntos
Elementos de DNA Transponíveis , Dinoflagellida , Íntrons/genética , Filogenia , Elementos de DNA Transponíveis/genética , Dinoflagellida/genética , Evolução Molecular , Spliceossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA