Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Microbiol ; 23(2): 1199-1209, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283951

RESUMO

Soil aggregates, with complex spatial and nutritional heterogeneity, are clearly important for regulating microbial community ecology and biogeochemistry in soils. However, how the taxonomic composition and functional attributes of N-cycling-microbes within different soil particle-size fractions under a long-term fertilization treatment remains largely unknown. Here, we examined the composition and metabolic potential for urease activity, nitrification, N2 O production and reduction of the microbial communities attached to different sized soil particles (2000-250, 250-53 and <53 µm) using a functional gene microarray (GeoChip) and functional assays. We found that urease activity and nitrification were higher in <53 µm fractions, whereas N2 O production and reduction rates were greater in 2000-250 and 250-53 µm across different fertilizer regimes. The abundance of key N-cycling genes involved in anammox, ammonification, assimilatory and dissimilatory N reduction, denitrification, nitrification and N2 -fixation detected by GeoChip increased as soil aggregate size decreased; and the particular key genes abundance (e.g., ureC, amoA, narG, nirS/K) and their corresponding activity were uncoupled. Aggregate fraction exerted significant impacts on N-cycling microbial taxonomic composition, which was significantly shaped by soil nutrition. Taken together, these findings indicate the important roles of soil aggregates in differentiating N-cycling metabolic potential and taxonomic composition, and provide empirical evidence that nitrogen metabolism potential and community are uncoupled due to aggregate heterogeneity.


Assuntos
Microbiota/fisiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Microbiologia do Solo , Fertilizantes/análise , Genes Microbianos , Microbiota/genética , Nitrificação/genética , Nitrogênio/análise , Ciclo do Nitrogênio/genética , Óxido Nitroso/metabolismo , Solo/química , Urease/genética , Urease/metabolismo
2.
Sci Rep ; 14(1): 14837, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937472

RESUMO

This study intends to inspect the effects of acute aerobic exercise (AE) on resting state functional connectivity (RSFC) in motor cortex of college students and the moderating effect of fitness level. METHODS: 20 high fitness level college students and 20 ordinary college students were recruited in public. Subjects completed 25 min of moderate- and high-intensity acute aerobic exercise respectively by a bicycle ergometer, and the motor cortex's blood oxygen signals in resting state were monitored by functional Near Infrared Spectroscopy (fNIRS, the Shimadzu portable Light NIRS, Japan) in pre- and post-test. RESULTS: At the moderate intensity level, the total mean value of RSFC pre- and post-test was significantly different in the high fitness level group (pre-test 0.62 ± 0.18, post-test 0.51 ± 0.17, t(19) = 2.61, p = 0.02, d = 0.58), but no significant change was found in the low fitness level group. At the high-intensity level, there was no significant difference in the difference of total RSFC between pre- and post-test in the high and low fitness group. According to and change trend of 190 "edges": at the moderate-intensity level, the number of difference edges in the high fitness group (d = 0.58, 23) were significantly higher than those in the low fitness group (d = 0.32, 15), while at high-intensity level, there was a reverse trend between the high fitness group (d = 0.25, 18) and the low fitness group (d = 0.39, 23). CONCLUSIONS: moderate-intensity AE can cause significant changes of RSFC in the motor cortex of college students with high fitness, while high fitness has a moderating effect on the relationship between exercise intensity and RSFC. RSFC of people with high fitness is more likely to be affected by AE and show a wider range of changes.


Assuntos
Exercício Físico , Córtex Motor , Estudantes , Humanos , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Exercício Físico/fisiologia , Masculino , Feminino , Adulto Jovem , Descanso/fisiologia , Adulto , Universidades , Espectroscopia de Luz Próxima ao Infravermelho/métodos
3.
NeuroRehabilitation ; 54(4): 677-690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905062

RESUMO

BACKGROUND: Intermittent theta burst stimulation (iTBS) has demonstrated efficacy in patients with cognitive impairment. However, activation patterns and mechanisms of iTBS for post-stroke cognitive impairment (PSCI) remain insufficiently understood. OBJECTIVE: To investigate the activation patterns and potential benefits of using iTBS in patients with PSCI. METHODS: A total of forty-four patients with PSCI were enrolled and divided into an iTBS group (iTBS and cognitive training) or a control group (cognitive training alone). Outcomes were assessed based on the activation in functional near-infrared spectroscopy (fNIRS), as well as Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) and the modified Barthel Index (MBI). RESULTS: Thirty-eight patients completed the interventions and assessments. Increased cortical activation was observed in the iTBS group after the interventions, including the right superior temporal gyrus (STG), left frontopolar cortex (FPC) and left orbitofrontal cortex (OFC). Both groups showed significant improvements in LOTCA and MBI after the interventions (p < 0.05). Furthermore, the iTBS group augmented superior improvement in the total score of MBI and LOTCA compared to the control group, especially in visuomotor organization and thinking operations (p < 0.05). CONCLUSION: iTBS altered activation patterns and improved cognitive function in patients with PSCI. The activation induced by iTBS may contribute to the improvement of cognitive function.


Assuntos
Disfunção Cognitiva , Espectroscopia de Luz Próxima ao Infravermelho , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/reabilitação , Disfunção Cognitiva/terapia , Idoso , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Ritmo Teta/fisiologia
4.
Chemosphere ; 352: 141471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373445

RESUMO

The bio-reduction of azo dyes is significantly dependent on the availability of electron donors and external redox mediators. In this study, the natural henna plant biomass was supplemented to promote the biological reduction of an azo dye of Acid Orange 7 (AO7). Besides, the machine learning (ML) approach was applied to decipher the intricate process of henna-assisted azo dye removal. The experimental results indicated that the hydrolysis and fermentation of henna plant biomass provided both electron donors such as volatile fatty acid (VFA) and redox mediator of lawsone to drive the bio-reduction of AO7 to sulfanilic acid (SA). The high henna dosage selectively enriched certain bacteria, such as Firmicutes phylum, Levilinea and Paludibacter genera, functioning in both the henna fermentation and AO7 reduction processes simultaneously. Among the three tested ML algorithms, eXtreme Gradient Boosting (XGBoost) presented exceptional accuracy and generalization ability in predicting the effluent AO7 concentrations with pH, oxidation-reduction potential (ORP), soluble chemical oxygen demand (SCOD), VFA, lawsone, henna dosage, and cumulative henna as input variables. The validating experiments with tailored optimal operating conditions and henna dosage (pH 7.5, henna dosage of 2 g/L, and cumulative henna of 14 g/L) confirmed that XGBoost was an effective ML model to predict the efficient AO7 removal (91.6%), with a negligible calculating error of 3.95%. Overall, henna plant biomass addition was a cost-effective and robust method to improve the bio-reduction of AO7, which had been demonstrated by long-term operation, ML modeling, and experimental validation.


Assuntos
Lawsonia (Planta) , Microbiota , Naftoquinonas , Corantes , Biomassa , Compostos Azo , Oxirredução , Benzenossulfonatos
5.
Sci Total Environ ; 916: 170189, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246368

RESUMO

Elevated nitrogen (N) fertilization has largely increased crop production in China, but also increased acidification risks, thereby threatening crop yields. However, natural soil acidification due to bicarbonate (HCO3) leaching and base cation (BC) removal by crop harvest also affect soil acidity whereas the input of HCO3 and BC via fertilizers and manure counteract soil acidification. Insights in rates and drivers of soil acidification in different land use types is too limited to support crop- and site-specific mitigation strategies. In this study, we assessed the historical changes in cropland acidification rates and their drivers for the period 1985-2019 at 151 sites in a typical Chinese county with the combined nutrient and soil acidification model VSD+. VSD+ could well reproduce long-term changes in pH and in the BC concentrations of calcium, magnesium and potassium between 1985 and 2019 in non-calcareous soils. In paddy soils, the acidity production rate decreased from 1985 onwards, mainly driven by a pH-induced reduction in HCO3 leaching and N transformations. In upland soils, however, acidity production was mainly driven by N transformations and hardly changed over time. Crop BC removal by harvesting played a minor role in both paddy and upland soils, but its relative importance increased in paddy soils. The acidity input was partly neutralized by HCO3 input from fertilizers and manure, which decreased over time due to a change from ammonia bicarbonate to urea. Soil buffering by both BC and aluminium release decreased in paddy soils due to a reduction in net acidity production, while it stayed relatively constant in upland soils. We conclude that acidification management in paddy soils requires a focus on avoiding high HCO3 leaching whereas the management in upland soils should focus on balancing N with recycling organic manure and crop residues.

6.
Front Physiol ; 14: 1066718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818451

RESUMO

Objective: To systematically evaluate the effect of aquatic exercise interventions on the improvement of lower-extremity motor function and quality of life in patients with Parkinson's disease. Methods: Two researchers independently searched the literature using the PubMed, Web of Science, Embase, and Cochrane Library databases. The search period was from the establishment of the database to December 2021. The subject heading search included "hydrotherapy," "hydro therapies," "hydro therapeutics," "water therapy," "aquatic exercise therapy," "aquatic therapy," "water-based exercise," "Parkinson," "Parkinson disease," "Parkinson's disease," "Parkinson's syndrome," "primary Parkinsonism," "paralysis agitans," and "randomized controlled trial (RCT)." Result: A total of 698 articles were retrieved from the four databases by searching for subject headings, and 10 RCT articles were finally included. The balance ability of aquatic exercise in patients with Parkinson's disease (weighted mean differences [WMD] = 2.234, 95% CI: 1.112-3.357, Z = 3.9, p < 0.01), walking ability (WMD = -0.911, 95% CI: -1.581 to -0.241, Z = 2.67, p < 0.01), and quality of life (WMD = -5.057, 95% CI: -9.610 to -0.504, Z = 2.18, p = 0.029) were improved, but there was no significant difference in motor function (WMD = -0.328, 95% CI: -1.781 to 1.125, Z = 0.44, p = 0.658). Conclusion: Compared with conventional rehabilitation therapy, aquatic exercise can effectively improve balance, walking ability, and quality of life in patients with Parkinson's disease. However, it had no obvious effect on improving motor function. This study was limited by the number and quality of the included studies, and more high-quality studies are needed to verify this. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022365103.

7.
Micromachines (Basel) ; 14(3)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985058

RESUMO

In recent years, Kubernetes (K8s) has become a dominant resource management and scheduling system in the cloud. In practical scenarios, short-running cloud workloads are usually scheduled through different scheduling algorithms provided by Kubernetes. For example, artificial intelligence (AI) workloads are scheduled through different Volcano scheduling algorithms, such as GANG_MRP, GANG_LRP, and GANG_BRA. One key challenge is that the selection of scheduling algorithms has considerable impacts on job performance results. However, it takes a prohibitively long time to select the optimal algorithm because applying one algorithm in one single job may take a few minutes to complete. This poses the urgent requirement of a simulator that can quickly evaluate the performance impacts of different algorithms, while also considering scheduling-related factors, such as cluster resources, job structures and scheduler configurations. In this paper, we design and implement a Kubernetes simulator called K8sSim, which incorporates typical Kubernetes and Volcano scheduling algorithms for both generic and AI workloads, and provides an accurate simulation of their scheduling process in real clusters. We use real cluster traces from Alibaba to evaluate the effectiveness of K8sSim, and the evaluation results show that (i) compared to the real cluster, K8sSim can accurately evaluate the performance of different scheduling algorithms with similar CloseRate (a novel metric we define to intuitively show the simulation accuracy), and (ii) it can also quickly obtain the scheduling results of different scheduling algorithms by accelerating the scheduling time by an average of 38.56×.

8.
Brain Behav ; 13(7): e3099, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37303301

RESUMO

OBJECTIVE: This study inspects difference of resting state functional connectivity (RSFC) of motor cortex between athletes and ordinary college students and the test-retest reliability of RSFC. METHODS: Twenty high fitness level college students (high fitness group) and 20 ordinary college students (control group) were recruited. The motor cortical blood oxygen signals in resting states were monitored by functional near infrared spectroscopy (fNIRS). RSFCs of brain signals were preprocessed and calculated by FC-NIRS software. RSFC results of test-retest reliability were evaluated by intra-class correlation coefficient (ICC). RESULTS: Total RSFC (HbO signal) was significantly different between high fitness group (0.62 ± 0.04) and low fitness group (0.81 ± 0.04) (p < .05). Significant differences were found between the groups (HbO signal) in 50 edges among the 190 edges of motor cortex (14 edges after FDR corrected). At three hemoglobin concentrations, mean of group-level ICC (C, 1) for total RSFC in two groups was 0.40 ± 0.10, whereas the mean of group-level ICC (C, k) was 0.57 ± 0.11, depicting "fair" reliability. The mean of group-level ICC (C, 1) of 190 "edges" was 0.88 ± 0.06, whereas mean of ICC (C, k) was 0.94 ± 0.03, exhibiting "excellent" reliability. CONCLUSION: Fitness level is the factor causing specific changes in RSFC strength of motor cortex that can be utilized as biomarker for evaluating the fitness level.


Assuntos
Córtex Motor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Mapeamento Encefálico/métodos , Córtex Motor/diagnóstico por imagem , Reprodutibilidade dos Testes , Vias Neurais , Descanso
9.
Sci Total Environ ; 806(Pt 4): 150955, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656583

RESUMO

Liming is a long-established and widely used agricultural practice to ameliorate soil acidity and improve crop production. Sustainable liming strategies for regional applications require information on both lime requirements and liming intervals given land use and soil dependent acidification rates. We developed a method to optimize lime requirements and liming intervals at regional level. Lime requirements were based on soil pH buffering capacity and liming intervals were estimated by ongoing soil acidity production, derived from major cations and anions balances in cropland systems. About 66% of croplands in Qiyang required liming to raise soil pH to 6.5, with a total lime requirement of 2.4 × 105 t CaCO3, with an average rate of 2.4 t ha-1 for paddy soils and 2.6 t ha-1 for upland soils. The remaining 34% were mainly calcareous soils. Nutrient management practices and crop rotations, affecting N transformation and crop removal, were the main drivers controlling the spatial variation in total acid production in non-calcareous soils, on average contributing 73% and 25%, respectively. Under current soil acidification rates, 33% of Qiyang's croplands would need liming within 30 years after raising the soil pH to 6.5. Averaged liming interval was 20 years, and 6.8 t ha-1 would be required to maintain soil pH ranges between 5.5 and 6.5. Areas with high soil acidification risk were mostly located in the southeast of Qiyang.


Assuntos
Compostos de Cálcio , Óxidos , Agricultura , Solo
10.
Sci Total Environ ; 754: 142189, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254904

RESUMO

Manure amendment has been shown to effectively prevent red soil (Ferralic Cambisol) acidification from chemical nitrogen (N) fertilization. However, information is lacking on how much manure is needed to mitigate acidification and maintain soil productivity while preventing accumulation of other nutrients and heavy metals from long-term inputs. This study determined the effects of various combinations of manure with urea-N on acidification and changes in soil P, K, and heavy metals in a 9-year maize field experiment in southern China. Treatments included chemical N, P and K fertilization only (NPKM0), and NPK plus swine manure, which supplied 20% (NPKM20), 40% (NPKM40), and 60% (NPKM60) of total N at 225 kg N ha-1 year-1. Soil pH, exchangeable acidity, available P and K, and maize yield were determined annually from 2009 to 2018. Soil exchangeable base cations, total and phytoavailable Cr, Pb, As, Ni, Cd, Cu, and Zn were measured in 2018. A significant decrease in soil pH occurred under NPKM0 and NPKM20 from initial 4.93 to 4.46 and 4.71, respectively. Whereas, under NPKM40 and NPKM60 no change or a significant increase in soil pH (to 5.47) occurred, as well as increased exchangeable base cations, and increased yields. Manure application markedly increased soil available P (but not K) to 67.6-182.6 mg kg-1 and significantly increased total Pb, Cu, and Zn and available Cu and Zn in soil. The results indicate sourcing 40% or greater of total N from manure can prevent or reverse acidification of red soil, and provide all P required, however, additional K inputs are required for balanced plant nutrient supply. An integrated approach of increasing N use efficiency, reducing chemical input, and reducing heavy metal concentrations in animal feed are all necessary for sustainable use of manure in soil acidity and nutrient management as well as minimizing environmental risks.

11.
Sci Total Environ ; 716: 137103, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32045764

RESUMO

Ureolytic microorganisms play a crucial role in soil nitrogen transformation. Soil aggregates and associated microbes are reported to modify the impact of agricultural management on soil nutrient cycling. However, the responses of ureolytic microbial communities in various soil aggregates to long-term fertilization regimes are still unclear in acid soils. In this study, we characterized the ureolytic microflora as well as urease activity in three soil aggregate fractions (2-0.25, 0.25-0.053, <0.053 mm) from an Ultisol with 26-year fertilization experiment. The results showed that long-term chemical fertilization (NPK) significantly decreased the abundance, richness and activity of ureolytic microbial community across soil aggregates (P < .05) due to strong soil acidification. While manure application (M and MNPK) could mitigate these negative impacts and markedly (P < .05) improved the abundance, α-diversity and activity of soil ureolytic microflora. Long-term fertilization regimes also drove the differentiation of ureolytic microbial compositions in soil aggregates (Adonis, F = 17.4, P = .001, R2 = 33.6%), and manure application appeared to be the most important driver. This variation partly contributed to the aberrance of soil urease activity (structure equation model, path coefficient: 0.45, P = .008). No significant differences were found for ureolytic microbial community among soil aggregates, which was in accordance with the distribution patterns of soil nutrients, indicating the dominant role of resources availability in determining ureolytic microbiota in micro-environment. The ureolytic microbial community among different soil aggregates responded uniformly to long-term fertilizations. Our study revealed that manure application was a sustainable fertilization regime to alleviate the loss of soil ureolytic microbial diversity and activity in acid soils.


Assuntos
Fertilizantes , Microbiologia do Solo , Esterco , Nitrogênio , Solo
12.
Front Microbiol ; 9: 885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867799

RESUMO

Nitrification is the two-step aerobic oxidation of ammonia to nitrate via nitrite in the nitrogen-cycle on earth. However, very limited information is available on how fertilizer regimes affect the distribution of nitrite oxidizers, which are involved in the second step of nitrification, across aggregate size classes in soil. In this study, the community compositions of nitrite oxidizers (Nitrobacter and Nitrospira) were characterized from a red soil amended with four types of fertilizer regimes over a 26-year fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/organic combined fertilization (MNPK). Our results showed that the addition of M and NPK significantly decreased Nitrobacter Shannon and Chao1 index, while M and MNPK remarkably increased Nitrospira Shannon and Chao1 index, and NPK considerably decreased Nitrospira Shannon and Chao1 index, with the greatest diversity achieved in soils amended with MNPK. However, the soil aggregate fractions had no impact on that alpha-diversity of Nitrobacter and Nitrospira under the fertilizer treatment. Soil carbon, nitrogen and phosphorus in the soil had a significant correlation with Nitrospira Shannon and Chao1 diversity index, while total potassium only had a significant correlation with Nitrospira Shannon diversity index. However, all of them had no significant correlation with Nitrobacter Shannon and Chao1 diversity index. The resistance indices for alpha-diversity indexes (Shannon and Chao1) of Nitrobacter were higher than those of Nitrospira in response to the fertilization regimes. Manure fertilizer is important in enhancing the Nitrospira Shannon and Chao1 index resistance. Principal co-ordinate analysis revealed that Nitrobacter- and Nitrospira-like NOB communities under four fertilizer regimes were differentiated from each other, but soil aggregate fractions had less effect on the nitrite oxidizers community. Redundancy analysis and Mantel test indicated that soil nitrogen, carbon, phosphorus, and available potassium content were important environmental attributes that control the Nitrobacter- and Nitrospira-like NOB community structure across different fertilization treatments under aggregate levels in the red soil. In general, nitrite-oxidizing bacteria community composition and alpha-diversity are depending on fertilizer regimes, but independent of the soil aggregate.

13.
J Agric Food Chem ; 65(16): 3253-3258, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28375633

RESUMO

Magnesium (Mg) plays important roles in photosynthesis and protein synthesis; however, latent Mg deficiencies are common phenomena that can influence food quality. Nevertheless, the effects of Mg fertilizer additions on plant carbon (C):nitrogen (N):phosphorus (P) stoichiometry, an important index of food quality, are unclear and the underlying mechanisms unexplored. We conducted a greenhouse experiment using low-Mg in situ soil without and with a gradient of Mg additions to investigate the effect of Mg fertilizer on growth and stoichiometry of maize and soybean and also measure these plants' main symbiotic microorganisms: arbuscular mycorrhizal fungi (AMF) and rhizobium, respectively. Our results showed that Mg addition significantly improved both plant species' growth and also increased N and P concentrations in soybean and maize, respectively, resulting in low C:N ratio and high N:P ratio in soybean and low C:P and N:P ratios in maize. These results presumably stemmed from the increase of nutrients supplied by activation-enhanced plant symbiotic microorganisms, an explanation supported by statistically significant positive correlations between plant stoichiometry and plants' symbiotic microorganisms' increased growth with Mg addition. We conclude that Mg supply can improve plant growth and alter plant stoichiometry via enhanced activity of plant symbiotic microorganisms. Possible mechanisms underlying this positive plant-soil feedback include an enhanced photosynthetic product flow to roots caused by adequate Mg supply.


Assuntos
Fertilizantes/análise , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Magnésio/metabolismo , Micorrizas/metabolismo , Rhizobium/metabolismo , Simbiose , Zea mays/crescimento & desenvolvimento , Magnésio/análise , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobium/crescimento & desenvolvimento , Microbiologia do Solo , Glycine max/química , Glycine max/fisiologia , Zea mays/química , Zea mays/microbiologia , Zea mays/fisiologia
14.
Environ Sci Pollut Res Int ; 23(4): 3781-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26498817

RESUMO

A field experiment was established to support the hypothesis that application of different silicon (Si) fertilizers can simultaneously reduce cadmium (Cd) and arsenic (As) concentration in rice grain. The "semi-finished product of Si-potash fertilizer" treatment at the high application of 9000 kg/ha (NP+S-KSi9000) significantly reduced the As concentration in rice grain by up to 20.1%, compared with the control. Si fertilization reduces the Cd concentration in rice considerably more than the As concentration. All Si fertilizers apart from sodium metasilicate (Na2SiO3) exhibited a high ability to reduce Cd concentration in rice grain. The Si-calcium (CaSi) fertilizer is the most effective in the mitigation of Cd concentration in rice grain. The CaSi fertilizer applied at 9000 kg/ha (NPK+CaSi9000) and 900 kg/ha (NPK+CaSi900) reduced the Cd concentration in rice grain about 71.5 and 48.0%, respectively, while the Si-potash fertilizer at 900 kg/ha (NP+KSi900), the semi-finished product of Si-potash fertilizer at both 900 kg/ha (NP+S-KSi900) and 9000 kg/ha (NP+S-KSi9000), and the rice straw (NPK+RS) treatments reduced the Cd concentration in rice grain about 42, 26.5, 40.7, and 23.1%, respectively. The results of this investigation demonstrated the potential effects of Si fertilizers in reducing Cd and As concentrations in rice grain.


Assuntos
Arsênio/análise , Cádmio/análise , Grão Comestível/crescimento & desenvolvimento , Fertilizantes/análise , Oryza/crescimento & desenvolvimento , Silício/química , Poluentes do Solo/análise , Arsênio/metabolismo , Cádmio/metabolismo , Grão Comestível/química , Oryza/química , Poluentes do Solo/metabolismo
15.
Ying Yong Sheng Tai Xue Bao ; 26(9): 2639-45, 2015 Sep.
Artigo em Zh | MEDLINE | ID: mdl-26785544

RESUMO

The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on pH and exchangeable acidity decreased with the increasing soil depth from all plots.


Assuntos
Florestas , Pradaria , Concentração de Íons de Hidrogênio , Solo/química , Arachis , Camellia sinensis , China , Citrus , Fagaceae , Hamamelidaceae , Pinus , Poaceae
16.
Ying Yong Sheng Tai Xue Bao ; 24(11): 3162-8, 2013 Nov.
Artigo em Zh | MEDLINE | ID: mdl-24564145

RESUMO

Taking a large standard runoff plot on a red soil slope in Qiyang County, southern Hunan Province as a case, this paper studied the surface soil phosphorus loss characteristics in the hilly red soil regions of southern Hunan under eight ecological planting patterns. The phosphorus loss from wasteland (T1) was most serious, followed by that from natural sloped cropping patterns (T2 and T3), while the phosphorus loss amount from terrace cropping patterns (T4-T8) was the least, only occupying 9.9%, 37%, 0.7%, 2.3%, and 1.9% of T1, respectively. The ecological planting patterns directly affected the forms of surface-lost soil phosphorus, with the particulate phosphorus (PP) as the main lost form. Under the condition of rainstorm (daily rainfall > 50 mm), rainfall had lesser effects on the phosphorus loss among different planting patterns. However, the phosphorus loss increased with increasing rain intensity. The surface soil phosphorus loss mainly occurred from June to September. Both the rainfall and the rain intensity were the factors directly affected the time distribution of surface soil phosphorus loss in hilly red soil regions of southern Hunan.


Assuntos
Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Fósforo/análise , Solo/química , Agricultura/métodos , China , Sedimentos Geológicos/análise , Chuva , Movimentos da Água
17.
FEMS Microbiol Ecol ; 70(2): 30-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19702873

RESUMO

Microcalorimetry, plate count and PCR-denaturing gradient gel electrophoresis (DGGE) were employed to investigate microbial diversity and activity in soils from the Red Soil Experimental Station of the Chinese Academy of Agricultural Sciences, Hunan Province, China, where a wheat-corn rotation with 12 fertilization treatments was established in 1990. Fertilization greatly increased microbial biomass carbon (C) and nitrogen (N) (C(mic) and N(mic)) as well as the activities of phosphatase, urease, invertase, protease, catalase and dehydrogenase. Manure alone (M) enhanced the number of denitrifying and aerobic bacteria by 54.4% and 20.5%, respectively, whereas fallow (H) increased the number of aerobic cellulose decomposing bacteria by 31.4%. Fallow and soils amended with mineral fertilizers plus pig manure or straw increased both the DGGE band patterns and the Shannon index compared with mineral fertilizers or the control. Mineral treatments with lower bacterial numbers enhanced the values of the peak time (t(max)) more than did organic treatments. The peak height (P(max)) was positively correlated (P<0.01), with soil enzymes, C(mic) and N(mic), and the number of microorganisms, whereas the peak time (t(max)) was negatively connected (P<0.01) with these parameters. The microbial growth rate constant (k) was linked to bacteria (P<0.01), actinomycetes (P<0.05) and catalase (P<0.05). The total heat evolution (Q) had no relationships with any soil microbial properties (except for catalase). We propose that P(max) and t(max) could be used as indices of soil microbial activity, while the values of k and Q are poor indicators.


Assuntos
Calorimetria/métodos , Fertilizantes , Microbiologia do Solo , Solo/análise , Bactérias/crescimento & desenvolvimento , Biomassa , China , Fungos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA