Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500626

RESUMO

Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60-120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral-contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.


Assuntos
Frutose , Roedores , Animais , Feminino , Masculino , Ratos , Frutose/metabolismo , Roedores/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Fluordesoxiglucose F18 , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo
2.
Org Biomol Chem ; 19(14): 3241-3254, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33885579

RESUMO

Increased energy metabolism followed by enhanced glucose consumption is a hallmark of cancer. Most cancer cells show overexpression of facilitated hexose transporter GLUT1, including breast cancer. GLUT1 is the main transporter for 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), the gold standard of positron emission tomography (PET) imaging in oncology. The present study's goal was to develop novel glucose-based dual imaging probes for their use in tandem PET and fluorescence (Fl) imaging. A glucosamine scaffold tagged with a fluorophore and an 18F-label should confer selectivity to GLUT1. Out of five different compounds, 2-deoxy-2-((7-sulfonylfluoro-2,1,3-benzoxadiazol-4-yl)amino)-d-glucose (2-FBDG) possessed favorable fluorescent properties and a similar potency as 2-deoxy-2-((7-nitro-2,1,3-benzoxadiazol-4-yl)amino)-d-glucose (2-NBDG) in competing for GLUT1 transport against 2-[18F]FDG in breast cancer cells. Radiolabeling with 18F was achieved through the synthesis of prosthetic group 7-fluoro-2,1,3-benzoxadiazole-4-sulfonyl [18F]fluoride ([18F]FBDF) followed by the reaction with glucosamine. The radiotracer was finally analyzed in vivo in a breast cancer xenograft model and compared to 2-[18F]FDG. Despite favourable in vitro fluorescence imaging properties, 2-[18F]FBDG was found to lack metabolic stability in vivo, resulting in radiodefluorination. Glucose-based 2-[18F]FBDG represents a novel dual-probe for GLUT1 imaging using FI and PET with the potential for further structural optimization for improved metabolic stability in vivo.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Corantes Fluorescentes/química , Fluordesoxiglucose F18/química , Transportador de Glucose Tipo 1/análise , Imagem Óptica , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Animais , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/síntese química , Fluordesoxiglucose F18/síntese química , Humanos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química
3.
Mol Pharmacol ; 93(2): 79-89, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29142019

RESUMO

Use of [18F]FDG-positron emission tomography (PET) in clinical breast cancer (BC) imaging is limited mainly by insufficient expression levels of facilitative glucose transporter (GLUT)1 in up to 50% of all patients. Fructose-specific facilitative hexose transporter GLUT5 represents an alternative biomarker for PET imaging of hexose metabolism in BC. The goal of the present study was to compare the uptake characteristics of selected hexose-based PET radiotracers in murine BC model EMT6. Uptake of 1-deoxy-1-[18F]fluoro-d-fructose (1-[18F]FDF), 6-deoxy-6-[18F]fluoro-d-fructose (6-[18F]FDF), 1-deoxy-1-[18F]fluoro-2,5-anhydro-mannitol (1-[18F]FDAM), 2-deoxy-2-[18F]fluoro-d-glucose (2-[18F]FDG), and 6-deoxy-6-[18F]fluoro-d-glucose (6-[18F]FDG) was studied in EMT6 cells, tumors, and muscle and correlated to GLUT1 and GLUT5 expression levels. Fructose-derivative 6-[18F]FDF revealed greater tumor uptake than did structural analog 1-[18F]FDF, whereas 1-[18F]FDAM with locked anomeric configuration showed similar low tumor uptake to that of 1-[18F]FDF. Glucose-derivative 6-[18F]FDG reached maximum tumor uptake at 20 minutes, with no further accumulation over time. Uptake of 2-[18F]FDG was greatest and continuously increasing owing to metabolic trapping through phosphorylation by hexokinase II. In EMT6 tumors, GLUT5 mRNA expression was 20,000-fold lower compared with GLUT1. Whereas the latter was much greater in tumor than in muscle tissue (GLUT1 50:1), the opposite was found for GLUT5 mRNA expression (GLUT5 1:6). GLUT5 protein levels were higher in tumor versus muscle tissue as determined by Western blot and immunohistochemistry. Our data suggest that tumor uptake of fructose metabolism-targeting radiotracers 1-[18F]FDF, 6-[18F]FDF, and 1-[18F]FDAM does not correlate with GLUT5 mRNA levels but is linked to GLUT5 protein levels. In conclusion, our results highlight the importance of detailed biochemical studies on GLUT protein expression levels in combination with PET imaging studies for functional characterization of GLUTs in BC.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Feminino , Radioisótopos de Flúor/metabolismo , Frutose/metabolismo , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 5 , Camundongos Endogâmicos BALB C , Músculos/metabolismo , RNA Mensageiro/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Análise Espectral/métodos
4.
Chemistry ; 23(33): 8073-8081, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28346703

RESUMO

The importance of the hydrogen bonding interactions in the GLUT-hexose binding process (GLUT=hexose transporter) has been demonstrated by studying the binding of structurally modified d-fructose analogues to GLUTs, and in one case its transport into cells. The presence of a hydrogen bond donor at the C-3 position of 2,5-anhydro-d-mannitol derivatives is essential for effective binding to GLUT5 and transport into tumor cells. Surprisingly, installation of a group that can function only as a hydrogen bond acceptor at C-3 resulted in selective recognition by GLUT1 rather than GLUT5. A fluorescently labelled analogue clearly showed GLUT-mediated transport and low efflux properties of the probe. This study reveals that a single positional modification of a 2,5-anhydro-d-mannitol derivative is sufficient to switch its binding preference from GLUT5 to GLUT1, and uncovers general scaffolds that are suitable for the potential selective delivery of molecular payloads into tumor cells via GLUT transport machinery.


Assuntos
Transportador de Glucose Tipo 1/metabolismo , Hexoses/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 5/química , Transportador de Glucose Tipo 5/genética , Transportador de Glucose Tipo 5/metabolismo , Hexoses/química , Humanos , Ligação de Hidrogênio , Manitol/análogos & derivados , Manitol/química , Camundongos , Microscopia Confocal , Proteínas de Transporte de Monossacarídeos/química , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
5.
J Mol Cell Cardiol ; 101: 134-144, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27825981

RESUMO

In cardiac and skeletal muscle, the troponin complex turns muscle contraction on and off in a calcium-dependent manner. Many small molecules are known to bind to the troponin complex to modulate its calcium binding affinity, and this may be useful in a broad range of conditions in which striated muscle function is compromised, such as congestive heart failure. As a tool for developing drugs specific for the cardiac isoform of troponin, we have designed a chimeric construct (cChimera) consisting of the regulatory N-terminal domain of cardiac troponin C (cNTnC) fused to the switch region of cardiac troponin I (cTnI), mimicking the key binding event that turns on muscle contraction. We demonstrate by solution NMR spectroscopy that cChimera faithfully reproduces the native interface between cTnI and cNTnC. We determined that small molecules based on diphenylamine can bind to cChimera with a KD as low as 10µM. Solution NMR structures show that minimal structural perturbations in cChimera are needed to accommodate 3-methyldiphenylamine (3-mDPA), which is probably why it binds with higher affinity than previously studied compounds like bepridil, despite its significantly smaller size. The unsubstituted aromatic ring of 3-mDPA binds to an inner hydrophobic pocket adjacent to the central beta sheet of cNTnC. However, the methyl-substituted ring is able to bind in two different orientations, either inserting into the cNTnC-cTnI interface or "flipping out" to form contacts primarily with helix C of cNTnC. Our work suggests that preservation of the native interaction between cNTnC and cTnI is key to the development of a high affinity cardiac troponin-specific drug.


Assuntos
Descoberta de Drogas , Modelos Moleculares , Troponina/química , Troponina/metabolismo , Animais , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Troponina C/química , Troponina C/metabolismo , Troponina I/química , Troponina I/metabolismo
6.
Chemistry ; 22(31): 10763-7, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27219685

RESUMO

1,2-Cyclohexadienes are transient intermediates that undergo rapid dimerization and intermolecular trapping with activated olefins and heteroatomic nucleophiles. Fluoride-mediated desilylative elimination of readily accessible 6-silylcyclohexene-1-triflates allows the mild, chemoselective, and functional-group tolerant generation of cyclic allene intermediates, which undergo efficient trapping reactions with stable 1,3-dipoles. The reactions proceed with high levels of both regio- and diastereoselectivity. The reaction of cyclic allenes with azides is accompanied by the facile loss of dinitrogen, resulting in the formation of tetrahydroindoles or polycylic aziridines depending on the azide employed.

7.
Angew Chem Int Ed Engl ; 54(34): 9940-3, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26138361

RESUMO

A domino potassium permanganate-interrupted Nazarov reaction to yield syn-2,3-disubstituted 1,4-diketones via a decarbonylative cleavage of the Nazarov oxyallyl intermediate, believed to be without precedent, is presented. This process allows syn substituents to be established stereospecifically on the 2-carbon bridge connecting the ketone carbonyl carbons, and the formation of one carbon-carbon and two carbon-oxygen bonds. Two carbon-carbon bonds are cleaved in this process.

8.
ACS Omega ; 9(20): 22213-22229, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799318

RESUMO

Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory infections for which effective treatment options remain limited. Herein, we employed a computational structure-based design strategy aimed at identifying potential targets for a new class of allosteric inhibitors. Our investigation led to the discovery of a previously undisclosed allosteric binding site within the RSV polymerase, the large (L) protein. This discovery was achieved through a combination of virtual screening and molecular dynamics simulations. Subsequently, we identified two inhibitors, 6a and 10b, which both exhibited promising antiviral activity in the low micromolar range. Resistance profiling revealed a distinctive pattern in how RSV evaded treatment with this class of inhibitors. This pattern strongly suggested that this class of small molecules was targeting a new binding site in the RSV L protein, aligning with the computational predictions made in our study. This study paves the way for the development of more potent inhibitors for combating RSV infections by targeting a new druggable pocket within the RdRp which does not overlap with previously known resistance sites.

9.
Sci Data ; 11(1): 597, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844472

RESUMO

Computationally screening chemical libraries to discover molecules with desired properties is a common technique used in early-stage drug discovery. Recent progress in the field now enables the efficient exploration of billions of molecules within days or hours, but this exploration remains confined within the boundaries of the accessible chemistry space. While the number of commercially available compounds grows rapidly, it remains a limited subset of all druglike small molecules that could be synthesized. Here, we present a workflow where chemical reactions typically developed in academia and unconventional in drug discovery are exploited to dramatically expand the chemistry space accessible to virtual screening. We use this process to generate a first version of the Pan-Canadian Chemical Library, a collection of nearly 150 billion diverse compounds that does not overlap with other ultra-large libraries such as Enamine REAL or SAVI and could be a resource of choice for protein targets where other libraries have failed to deliver bioactive molecules.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Canadá
10.
Biochim Biophys Acta Biomembr ; 1866(3): 184281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218576

RESUMO

Solution NMR spectroscopy of large protein systems is hampered by rapid signal decay, so most multidimensional studies focus on long-lived 1H-13C magnetization in methyl groups and/or backbone amide 1H-15N magnetization in an otherwise perdeuterated environment. Herein we demonstrate that it is possible to biosynthetically incorporate additional 1H-12C groups that possess long-lived magnetization using cost-effective partially deuterated or unlabeled amino acid precursors added to Escherichia coli growth media. This approach is applied to the outer membrane enzyme PagP in membrane-mimetic dodecylphosphocholine micelles. We were able to obtain chemical shift assignments for a majority of side chain 1H positions in PagP using nuclear Overhauser enhancements (NOEs) to connect them to previously assigned backbone 1H-15N groups and newly assigned 1H-13C methyl groups. Side chain methyl-to-aromatic NOEs were particularly important for confirming that the amphipathic α-helix of PagP packs against its eight-stranded ß-barrel, as indicated by previous X-ray crystal structures. Interestingly, aromatic NOEs suggest that some aromatic residues in PagP that are buried in the membrane bilayer are highly mobile in the micellar environment, like Phe138 and Phe159. In contrast, Tyr87 in the middle of the bilayer is quite rigid, held in place by a hydrogen bonded network extending to the surface that resembles a classic catalytic triad: Tyr87-His67-Asp61. This hydrogen bonded arrangement of residues is not known to have any catalytic activity, but we postulate that its role is to immobilize Tyr87 to facilitate packing of the amphipathic α-helix against the ß-barrel.


Assuntos
Aminoácidos , Proteínas de Escherichia coli , Aminoácidos/metabolismo , Proteínas de Escherichia coli/química , Espectroscopia de Ressonância Magnética , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Hidrogênio , Aciltransferases/química
11.
Comput Biol Med ; 152: 106442, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566625

RESUMO

SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase-2) is a cytoplasmic protein -tyrosine phosphatase encoded by the gene PTPN11. It plays a crucial role in regulating cell growth and differentiation. Specifically, SHP2 is an oncoprotein associated with developmental pathologies and several different cancer types, including gastric, leukemia and breast cancer and is of great therapeutic interest. Given these roles, current research efforts have focused on developing SHP2 inhibitors. Allosteric SHP2 inhibitors have been shown to be more selective and pharmacologically appealing compared to competitive catalytic inhibitors targeting SHP2. Nevertheless, there remains a need for novel allosteric inhibitor scaffolds targeting SHP2 to develop compounds with improved selectivity, cell permeability, and bioavailability. Towards this goal, this study applied various computational tools to screen over 6 million compounds against the allosteric site within SHP2. The top-ranked hits from our in-silico screening were validated using protein thermal shift and biolayer interferometry assays, revealing three potent compounds. Kinetic binding assays were employed to measure the binding affinities of the top-ranked compounds and demonstrated that they all bind to SHP2 with a nanomolar affinity. Hence the compounds and the computational workflow described herein provide an effective approach for identifying and designing a generation of improved allosteric inhibitors of SHP2.


Assuntos
Neoplasias da Mama , Inibidores Enzimáticos , Humanos , Feminino , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Proliferação de Células , Diferenciação Celular
12.
J Magn Reson ; 353: 107499, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37307676

RESUMO

Solution NMR studies of large proteins are hampered by rapid signal decay due to short-range dipolar 1H-1H and 1H-13C interactions. These are attenuated by rapid rotation in methyl groups and by deuteration (2H), so selective 1H,13C-isotope labelling of methyl groups in otherwise perdeuterated proteins, combined with methyl transverse relaxation optimized spectroscopy (methyl-TROSY), is now standard for solution NMR of large protein systems > 25 kDa. For non-methyl positions, long-lived magnetization can be introduced as isolated 1H-12C groups. We have developed a cost-effective chemical synthesis for producing selectively deuterated phenylpyruvate and hydroxyphenylpyruvate. Feeding these amino acid precursors to E. coli in D2O, along with selectively deuterated anthranilate and unlabeled histidine, results in isolated and long-lived 1H magnetization in the aromatic rings of Phe (HD, HZ), Tyr (HD), Trp (HH2, HE3) and His (HD2 and HE1). We are additionally able to obtain stereoselective deuteration of Asp, Asn, and Lys amino acid residues using unlabeled glucose and fumarate as carbon sources and oxalate and malonate as metabolic inhibitors. Combining these approaches produces isolated 1H-12C groups in Phe, Tyr, Trp, His, Asp, Asn, and Lys in a perdeuterated background, which is compatible with standard 1H-13C labeling of methyl groups in Ala, Ile, Leu, Val, Thr, Met. We show that isotope labeling of Ala is improved using the transaminase inhibitor L-cycloserine, and labeling of Thr is improved through addition of Cys and Met, which are known inhibitors of homoserine dehydrogenase. We demonstrate the creation of long-lived 1H NMR signals in most amino acid residues using our model system, the WW domain of human Pin1, as well as the bacterial outer membrane protein PagP.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Humanos , Análise Custo-Benefício , Espectroscopia de Prótons por Ressonância Magnética , Aminoácidos Aromáticos , Aminoácidos , Aciltransferases
13.
Heliyon ; 9(11): e21408, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027705

RESUMO

In the past decade, there has been increasing interest in use of small molecules for immunomodulation. The affinity-based pull-down purification is an essential tool for target identification of small molecules and drug discovery. This study presents our recent efforts to investigate the cellular target(s) of Compound A, a small molecule with demonstrated immunomodulatory properties in human peripheral blood mononuclear cells (PBMCs). While we have previously observed the immunomodulatory activity of Compound A in PBMCs, the specific molecular targets underlying its effects remains elusive. To address this challenge, we synthesized a trifluoromethyl phenyl diazirine (TPD)-bearing trifunctional Probe 1 based on the chemical structure of Compound A, which could be used in a pull-down assay to efficiently bind to putative cellular targets via photoaffinity labelling. In this report, we utilized bovine serum albumin (BSA) as a model protein to establish a proof-of-concept in order to assess the suitability of Probe 1 for binding to an endogenous target. By the successful synthesis of Probe 1 and demonstrating the efficient binding of Probe 1 to BSA, we propose that this method can be used as a tool for further identification of potential protein targets of small molecules in living cells. Our findings provide a valuable starting point for further investigations into the molecular mechanisms underlying the immunomodulatory effects of Compound A.

14.
Pharmaceutics ; 14(3)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336019

RESUMO

Dual probes that possess positron emission tomography (PET) and fluorescence imaging (FI) capabilities are precision medicine tools that can be used to improve patient care and outcomes. Detecting tumor lesions using PET, an extremely sensitive technique, coupled with fluorescence-guided surgical resection of said tumor lesions can maximize the removal of cancerous tissue. The development of novel molecular probes is important for targeting different biomarkers as every individual case of cancer has different characteristics. This short review will discuss some aspects of dual PET/FI probes and explore the recently reported examples.

15.
Pharmaceutics ; 14(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559288

RESUMO

Radiation therapy (RT) is frequently used to locally treat tumors. One of the major issues in RT is normal tissue toxicity; thus, it is necessary to limit dose escalation for enhanced local control in patients that have locally advanced tumors. Integrating radiosensitizing agents such as gold nanoparticles (GNPs) into RT has been shown to greatly increase the cure rate of solid tumors. The objective of this study was to explore the repurposing of an antimalarial drug, pyronaridine (PYD), as a DNA repair inhibitor to further enhance RT/GNP-induced DNA damage in cancerous cell lines. We were able to achieve inhibitory effects of DNA repair due to PYD at 500 nM concentration. Our results show a significant enhancement in DNA double-strand breaks of 42% in HeLa cells treated with PYD/GNP/RT in comparison to GNP/RT alone when irradiated with a dose of 2 Gy. Furthermore, there was a significant reduction in cellular proliferation for both HeLa and HCT-116 irradiated cells with the combined treatment of PYD/GNP/RT. Therefore, the emergence of promising novel concepts introduced in this study could lay the foundation for the transition of this treatment modality into clinical environments.

16.
EJNMMI Radiopharm Chem ; 7(1): 13, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697954

RESUMO

BACKGROUND: Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo. RESULTS: We have developed a novel 18F-labeled radiotracer for hypoxia PET imaging based on cytotoxic agent benznidazole. Radiotracer N-(4-[18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide ([18F]FBNA) was synthesized through acylation chemistry with readily available 4-[18F]fluorobenzyl amine. Radiotracer [18F]FBNA was obtained in good radiochemical yields (47.4 ± 5.3%) and high radiochemical purity (> 95%). The total synthesis time was 100 min, including HPLC purification and the molar activity was greater than 40 GBq/µmol. Radiotracer [18F]FBNA was stable in saline and mouse serum for 6 h. [18F]FBNA partition coefficient (logP = 1.05) was found to be more lipophilic than [18F]EF-5 (logP = 0.75), [18F]FMISO (logP = 0.4) and [18F]FAZA (logP = - 0.4). In vitro studies showed that [18F]FBNA accumulates in gastric cancer cell lines AGS and MKN45 under hypoxic conditions. CONCLUSIONS: Hence, [18F]FBNA represents a novel and easy-to-prepare PET radioligand for imaging hypoxia.

17.
Front Oncol ; 12: 819172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372043

RESUMO

Inhibition of DNA repair enzymes is an attractive target for increasing the efficacy of DNA damaging chemotherapies. The ERCC1-XPF heterodimer is a key endonuclease in numerous single and double strand break repair processes, and inhibition of the heterodimerization has previously been shown to sensitize cancer cells to DNA damage. In this work, the previously reported ERCC1-XPF inhibitor 4 was used as the starting point for an in silico study of further modifications of the piperazine side-chain. A selection of the best scoring hits from the in silico screen were synthesized using a late stage functionalization strategy which should allow for further iterations of this class of inhibitors to be readily synthesized. Of the synthesized compounds, compound 6 performed the best in the in vitro fluorescence based endonuclease assay. The success of compound 6 in inhibiting ERCC1-XPF endonuclease activity in vitro translated well to cell-based assays investigating the inhibition of nucleotide excision repair and disruption of heterodimerization. Subsequently compound 6 was shown to sensitize HCT-116 cancer cells to treatment with UVC, cyclophosphamide, and ionizing radiation. This work serves as an important step towards the synergistic use of DNA repair inhibitors with chemotherapeutic drugs.

18.
Sci Rep ; 11(1): 11757, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083676

RESUMO

Invasive breast cancer (BrCa) is predicted to affect 1 in 9 women in a lifetime;1 in 32 will die from this disease. The most aggressive forms of BrCa, basal-like/triple-negative phenotype (TNBC), are challenging to treat and result in higher mortality due high number of metastatic cases. There is a paucity of options for TNBC treatment, which highlights the need for additional innovative treatment approaches. NIH-III mice were injected in the abdominal mammary fat pad with luciferase-expressing derivative of the human TNBC cell line, MDA-MB-231 cells. Animals were gavage-fed with nitrofen at the doses of 1, 3 or 6 mg/kg/alternate days. However, several structural properties/components of nitrofen raise concerns, including its high lipophilicity (cLogP of nearly 5) and a potential toxophore in the form of a nitroarene group. Therefore, we developed analogues of nitrofen which lack the nitro group and/or have replaced the diaryl ether linker with a diarylamine that could allow modulation of polarity. In vitro anti-invasiveness activity of nitrofen analogues were evaluated by quantitative determination of invasion of MDA-MB-231-Luciferase cells through Matrigel using a Boyden chamber. Our in vivo data show that nitrofen efficiently blocks TNBC tumor metastasis. In vitro data suggest that this is not due to cytotoxicity, but rather is due to impairment of invasive capacity of the cells. Further, using an in vitro model of EMT, we show that nitrofen interferes with the process of EMT and promotes mesenchymal to epithelial transformation. In addition, we show that three of the nitrofen analogues significantly reduced invasive potential of TNBC cells, which may, at least partially, be attributed to the analogues' ability to promote mesenchymal to epithelial-like transformation of TNBC cells. Our study shows that nitrofen, and more importantly its analogues, are significantly effective in limiting the invasive potential of TNBC cell lines with minimal cytotoxic effect. Further, we demonstrate that nitrofen its analogues, are very effective in reversing mesenchymal phenotype to a more epithelial-like phenotype. This may be significant for the treatment of patients with mesenchymal-TNBC tumor subtype who are well known to exhibit high resistance to chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Animais , Antineoplásicos/química , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Humanos , Camundongos , Estrutura Molecular , Invasividade Neoplásica , Éteres Fenílicos/química , Éteres Fenílicos/farmacologia , Ratos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Pharmacol Ther ; 220: 107712, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33121940

RESUMO

RSV infection of the lower respiratory tract in infants is the leading cause of pediatric hospitalizations and second to malaria in causing infant deaths worldwide. RSV also causes substantial morbidity in immunocompromised and elderly populations. The only available therapeutic is a prophylactic drug called Palivizumab that is a humanized monoclonal antibody, given to high-risk infants. However, this intervention is expensive and has a limited impact on annual hospitalization rates caused by RSV. No vaccine is available, nor are efficacious antivirals to treat an active infection, and there is still no consensus on how infants with bronchiolitis should be treated during hospital admission. In this comprehensive review, we briefly outline the function of the RSV proteins and their suitability as therapeutic targets. We then discuss the most promising drug candidates, their inhibitory mechanisms, and whether they are in the process of clinical trials. We also briefly discuss the reasons for some of the failures in RSV therapeutics and vaccines. In summary, we provide insight into current antiviral development and the considerations toward producing licensed antivirals and therapeutics.


Assuntos
Antivirais , Infecções por Vírus Respiratório Sincicial , Antivirais/uso terapêutico , Ensaios Clínicos como Assunto , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico
20.
Cancer Chemother Pharmacol ; 87(2): 259-267, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33399940

RESUMO

PURPOSE: The ERCC1-XPF 5'-3' DNA endonuclease complex is involved in the nucleotide excision repair pathway and in the DNA inter-strand crosslink repair pathway, two key mechanisms modulating the activity of chemotherapeutic alkylating agents in cancer cells. Inhibitors of the interaction between ERCC1 and XPF can be used to sensitize cancer cells to such drugs. METHODS: We tested recently synthesized new generation inhibitors of this interaction and evaluated their capacity to sensitize cancer cells to the genotoxic activity of agents in synergy studies, as well as their capacity to inhibit the protein-protein interaction in cancer cells using proximity ligation assay. RESULTS: Compound B9 showed the best activity being synergistic with cisplatin and mitomycin C in both colon and lung cancer cells. Also, B9 abolished the interaction between ERCC1 and XPF in cancer cells as shown by proximity ligation assay. Results of different compounds correlated with values from our previously obtained in silico predictions. CONCLUSION: Our results confirm the feasibility of the approach of targeting the protein-protein interaction between ERCC1 and XPF to sensitize cancer cells to alkylating agents, thanks to the improved binding affinity of the newly synthesized compounds.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cisplatino/administração & dosagem , Neoplasias do Colo/genética , Simulação por Computador , Reparo do DNA/genética , Sinergismo Farmacológico , Células HCT116 , Humanos , Neoplasias Pulmonares/genética , Mitomicina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA