Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 132(19): 6817-21, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20423080

RESUMO

We have measured the conductance and characterized molecule-electrode binding geometries of four pyridine-terminated molecules by elongating and then compressing gold point contacts in a solution of molecules. We have found that all pyridine-terminated molecules exhibit bistable conductance signatures, signifying that the nature of the pyridine-gold bond allows two distinct conductance states that are accessed as the gold-molecule-gold junction is elongated. We have identified the low-conductance state as corresponding to a molecule fully stretched out between the gold electrodes, where the distance between contacts correlates with the length of the molecule; the high-conductance state is due to a molecule bound at an angle. For all molecules, we have found that the distribution of junction elongations in the low-conductance state is the same, while in the high-conductance state, the most likely elongation length increases linearly with molecule length. The results of first-principles conductance calculations for the four molecules in the low-conductance geometry agree well with the experimental results and show that the dominant conducting channel in the conjugated pyridine-linked molecules is through the pi* orbital.

2.
Phys Rev Lett ; 102(12): 126803, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19392306

RESUMO

We analyze the formation and evolution statistics of single-molecule junctions bonded to gold electrodes using amine, methyl sulfide, and dimethyl phosphine link groups by measuring conductance as a function of junction elongation. For each link, the maximum elongation and formation probability increase with molecular length, strongly suggesting that processes other than just metal-molecule bond breakage play a key role in junction evolution under stress. Density functional theory calculations of adiabatic trajectories show sequences of atomic-scale changes in junction structure, including shifts in the attachment point, that account for the long conductance plateau lengths observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA