Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 238(4): 1546-1561, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36772855

RESUMO

Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal pathogen of wheat that can rapidly evolve to defeat wheat powdery mildew (Pm) resistance genes. Despite periodic regional deployment of the Pm1a resistance gene in US wheat production, Bgt strains that overcome Pm1a have been notably nonpersistent in the United States, while on other continents, they are more widely established. A genome-wide association study (GWAS) was conducted to map sequence variants associated with Pm1a virulence in 216 Bgt isolates from six countries, including the United States. A virulence variant apparently unique to Bgt isolates from the United States was detected in the previously mapped gene AvrPm1a (BgtE-5612) on Bgt chromosome 6; an in vitro growth assay suggested no fitness reduction associated with this variant. A gene on Bgt chromosome 8, Bgt-51526, was shown to function as a second determinant of Pm1a virulence, and despite < 30% amino acid identity, BGT-51526 and BGTE-5612 were predicted to share > 85% of their secondary structure. A co-expression study in Nicotiana benthamiana showed that BGTE-5612 and BGT-51526 each produce a PM1A-dependent hypersensitive response. More than one member of a B. graminis effector family can be recognized by a single wheat immune receptor, and a two-gene model is necessary to explain virulence to Pm1a.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética
2.
Phytopathology ; 112(2): 249-260, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34156265

RESUMO

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, is managed primarily with cultivar resistance and foliar fungicides. Quinone outside inhibitors (QoIs), which target the mitochondrial cytochrome b (cytb) gene, are one of the two main fungicide classes used on wheat. While European populations of B. graminis f. sp. tritici are widely insensitive to QoIs, largely because of the cytb mutation G143A, the QoI sensitivity of the U.S. B. graminis f. sp. tritici population had never been evaluated despite years of QoI use on U.S. wheat. A total of 381 B. graminis f. sp. tritici isolates from 15 central and eastern U.S. states were screened for sensitivity to QoI fungicides pyraclostrobin and picoxystrobin. A modest range of sensitivities was observed, with maximum resistance factors of 11.2 for pyraclostrobin and 5.3 for picoxystrobin. The F129L, G137R, and G143A cytb mutations were not detected in the U.S. B. graminis f. sp. tritici population, nor were mutations identified in the PEWY loop, a key part of the Qo site. Thus, no genetic basis for the observed quantitative variation in QoI sensitivity of U.S. B. graminis f. sp. tritici was identified. Isolate sporulation was weakly negatively associated with reduced QoI sensitivity, suggesting a fitness cost. In the course of the study, the complete B. graminis f. sp. tritici cytb gene sequence was determined for the first time in the isolate 96224 v. 3.16 reference genome. Contrary to previous reports, the gene has an intron that appears to belong to intron group II, which is unusual in fungi. The study was the first QoI sensitivity screening of a large, geographically diverse set of U.S. B. graminis f. sp. tritici isolates, and while the population as a whole remains relatively sensitive, some quantitative loss of efficacy was observed.


Assuntos
Ascomicetos , Fungicidas Industriais , Ascomicetos/genética , Citocromos b/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Estrobilurinas , Triticum/microbiologia
3.
Theor Appl Genet ; 127(2): 349-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24193357

RESUMO

KEY MESSAGE: Two new sources of elevated seed stearic acid were identified and the feasibility of an elevated stearic acid, high oleic acid germplasm was studied. Soybean [Glycine max (L.) Merr.] oil typically contains 2-4% stearic acid. Oil with at least 20% stearic acid is desirable because of its improved baking properties and health profile. This study identifies two new sources of high stearic acid and evaluates the interaction of high stearic and oleic acid alleles. TCHM08-1087 and TCHM08-755, high stearic acid 'Holladay' mutants, were crossed to FAM94-41-3, a line containing a point mutation in a seed-specific isoform of a Δ9-stearoyl-acyl carrier protein-desaturase (SACPD-C). F2-derived lines were evaluated for fatty acid content in four field environments. Sequencing of SACPDs in TCHM08-1087 and TCHM08-755 revealed distinct deletions of at least one megabase encompassing SACPD-C in both lines. After genotyping, the additive effect for stearic acid was estimated at +1.8% for the SACPD-C point mutation and +4.1% for the SACPD-C deletions. Average stearic acid in lines homozygous for the deletions was 12.2%. A FAM94-41-3-derived line and TCHM08-1087-11, a selection from TCHM08-1087, were crossed to S09-2902-145, a line containing missense mutations in two fatty acid desaturases (FAD2-1A and FAD2-1B). F1 plants were grown in a greenhouse and individual F2 seed were genotyped and phenotyped. No interaction was observed between either FAD2-1A or FAD2-1B and any of the SACPD-C mutant alleles. Seed homozygous mutant for SACPD-C/FAD2-1A/FAD2-1B contained 12.7% stearic acid and 65.5% oleic acid while seed homozygous for the SACPD-C deletion and mutant for FAD2-1A and FAD2-1B averaged 10.4% stearic acid and 75.9% oleic acid.


Assuntos
Ácidos Graxos Dessaturases/genética , Mutação , Ácido Oleico/química , Sementes/química , Óleo de Soja/química
4.
Theor Appl Genet ; 127(1): 97-111, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24132738

RESUMO

KEY MESSAGE: fap 1 mutation is caused by a G174A change in GmKASIIIA that disrupts a donor splice site recognition and creates a GATCTG motif that enhanced its expression. Soybean oil with reduced palmitic acid content is desirable to reduce the health risks associated with consumption of this fatty acid. The objectives of this study were: to identify the genomic location of the reduced palmitate fap1 mutation, determine its molecular basis, estimate the amount of phenotypic variation in fatty acid composition explained by this locus, determine if there are epistatic interactions between the fap1 and fap nc loci and, determine if the fap1 mutation has pleiotropic effects on seed yield, oil and protein content in three soybean populations. This study detected two major QTL for 16:0 content located in chromosome 5 (GmFATB1a, fap nc) and chromosome 9 near BARCSOYSSR_09_1707 that explained, with their interaction, 66-94 % of the variation in 16:0 content in the three populations. Sequencing results of a putative candidate gene, GmKASIIIA, revealed a single unique polymorphism in the germplasm line C1726, which was predicted to disrupt the donor splice site recognition between exon one and intron one and produce a truncated KASIIIA protein. This G to A change also created the GATCTG motif that enhanced gene expression of the mutated GmKASIIIA gene. Lines homozygous for the GmKASIIIA mutation (fap1) had a significant reduction in 16:0, 18:0, and oil content; and an increase in unsaturated fatty acids content. There were significant epistatic interactions between GmKASIIIA (fap1) and fap nc for 16:0 and oil contents, and seed yield in two populations. In conclusion, the fap1 phenotype is caused by a single unique SNP in the GmKASIIIA gene.


Assuntos
Glycine max/genética , Palmitatos/metabolismo , Proteínas de Plantas/genética , Óleo de Soja/química , Northern Blotting , Mapeamento Cromossômico , Cromossomos de Plantas , Estudos de Associação Genética , Locos de Características Quantitativas , Glycine max/metabolismo
5.
Mol Plant Pathol ; 25(9): e13498, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39305021

RESUMO

We examined the molecular basis of triazole resistance in Blumeria graminis f. sp. tritici (wheat mildew, Bgt), a model organism among powdery mildews. Four genetic models for responses to triazole fungicides were identified among US and UK isolates, involving multiple genetic mechanisms. Firstly, only two amino acid substitutions in CYP51B lanosterol demethylase, the target of triazoles, were associated with resistance, Y136F and S509T (homologous to Y137F and S524T in the reference fungus Zymoseptoria tritici). As sequence variation did not explain the wide range of resistance, we also investigated Cyp51B copy number and expression, the latter using both reverse transcription-quantitative PCR and RNA-seq. The second model for resistance involved higher copy number and expression in isolates with a resistance allele; thirdly, however, moderate resistance was associated with higher copy number of wild-type Cyp51B in some US isolates. A fourth mechanism was heteroallelism with multiple alleles of Cyp51B. UK isolates, with significantly higher mean resistance than their US counterparts, had higher mean copy number, a high frequency of the S509T substitution, which was absent from the United States, and in the most resistant isolates, heteroallelism involving both sensitivity residues Y136+S509 and resistance residues F136+T509. Some US isolates were heteroallelic for Y136+S509 and F136+S509, but this was not associated with higher resistance. The obligate biotrophy of Bgt may constrain the tertiary structure and thus the sequence of CYP51B, so other variation that increases resistance may have a selective advantage. We describe a process by which heteroallelism may be adaptive when Bgt is intermittently exposed to triazoles.


Assuntos
Ascomicetos , Farmacorresistência Fúngica , Fungicidas Industriais , Dosagem de Genes , Farmacorresistência Fúngica/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Fungicidas Industriais/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Triazóis/farmacologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Triticum/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo
6.
Theor Appl Genet ; 126(1): 241-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22961205

RESUMO

Soybean [Glycine max (L.) Merr.] oil typically contains 2-4% stearic acid. Seed oil with 20% stearic acid would be useful for solid fat applications, both for its cooking properties and health benefits. Breeding lines with high stearic acid have been developed, but many suffer from agronomic problems. This study identifies a new source of high stearic acid, determines its relationship with another high stearic locus and presents molecular markers for it is use in breeding. TCJWB03-806-7-19, a 'Holladay' mutant with high stearic acid, was crossed to two FAM94-41-derived lines that contained a point mutation in a seed-specific isoform of a Δ9-stearoyl-acyl carrier protein-desaturase (SACPD-C). Fatty acid analysis was performed over two growing seasons with F(2)-derived lines and transgressive segregation for stearic acid content was observed. Sequencing of SACPD isoforms in TCJWB03-806-7-19 revealed the deletion of an 'A' nucleotide in exon 3 of SACPD-B, which results in a protein whose final 28 amino acids are predicted to differ from Williams 82 SACPD-B. Sorting intolerant from tolerant (SIFT) analysis revealed that this frameshift mutation may affect SACPD-B protein function. Allele-specific genotyping for the SACPD-C point mutation and SACPD-B nucleotide deletion was performed in both populations. Additive effects and R(2) for stearic acid were +3.3 and 0.55 for SACPD-C and +1.9 and 0.19 for SACPD-B. Average stearic acid in lines homozygous for both mutations was 14.6%. This SACPD-B mutation represents a novel high stearic allele.


Assuntos
Proteínas de Arabidopsis/genética , Ácidos Graxos Dessaturases/genética , Mutação , Óleo de Soja/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Cruzamentos Genéticos , Primers do DNA/genética , Éxons , Ácidos Graxos/metabolismo , Deleção de Genes , Genes de Plantas , Genótipo , Modelos Genéticos , Dados de Sequência Molecular , Nucleotídeos/genética , Folhas de Planta/metabolismo , Isoformas de Proteínas , Homologia de Sequência de Aminoácidos , Ácidos Esteáricos/metabolismo
7.
Front Plant Sci ; 9: 1616, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467511

RESUMO

Aegilops markgrafii (Greuter) Hammer is an important source of genes for resistance to abiotic stresses and diseases in wheat (Triticum aestivum L.). A series of six wheat 'Alcedo'-Ae. markgrafii chromosome disomic addition lines, designated as AI(B), AII(C), AIII(D), AV(E), AIV(F), and AVIII(G) carrying the Ae. markgrafii chromosomes B, C, D, E, F, and G, respectively, were tested with SSR markers to establish homoeologous relationships to wheat and identify markers useful in chromosome engineering. The addition lines were evaluated for resistance to rust and powdery mildew diseases. The parents Alcedo and Ae. markgrafii accession 'S740-69' were tested with 1500 SSR primer pairs and 935 polymorphic markers were identified. After selecting for robust markers and confirming the polymorphisms on the addition lines, 132 markers were considered useful for engineering and establishing homoeologous relationships. Based on the marker analysis, we concluded that the chromosomes B, C, D, E, F, and G belong to wheat homoeologous groups 2, 5, 6, 7, 3, and 4, respectively. Also, we observed chromosomal rearrangements in several addition lines. When tested with 20 isolates of powdery mildew pathogen (Blumeria graminis f. sp. tritici) from five geographic regions of the United States, four addition lines [AIII(D), AV(E), AIV(F), and AVIII(G)] showed resistance to some isolates, with addition line AV(E) being resistant to 19 of 20 isolates. The addition lines were tested with two races (TDBJ and TNBJ) of the leaf rust pathogen (Puccinia triticina), and only addition line AI(B) exhibited resistance at a level comparable to the Ae. markgrafii parent. Addition lines AII(C) and AIII(D) had been previously identified as resistant to the Ug99 race group of the stem rust pathogen (Puccinia graminis f. sp. tritici). The addition lines were also tested for resistance to six United States races (PSTv-4, PSTv-14, PSTv-37, PSTv-40, PSTv-51, and PSTv-198) of the stripe rust pathogen (Puccinia striiformis f. sp. tritici); we found no resistance either in Alcedo or any of the addition lines. The homoeologous relationships of the chromosomes in the addition lines, molecular markers located on each chromosome, and disease resistance associated with each chromosome will allow for chromosome engineering of the resistance genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA