Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Science ; 286(5446): 1888-93, 1999 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-10583944

RESUMO

Polypeptides emerging from the ribosome must fold into stable three-dimensional structures and maintain that structure throughout their functional lifetimes. Maintaining quality control over protein structure and function depends on molecular chaperones and proteases, both of which can recognize hydrophobic regions exposed on unfolded polypeptides. Molecular chaperones promote proper protein folding and prevent aggregation, and energy-dependent proteases eliminate irreversibly damaged proteins. The kinetics of partitioning between chaperones and proteases determines whether a protein will be destroyed before it folds properly. When both quality control options fail, damaged proteins accumulate as aggregates, a process associated with amyloid diseases.


Assuntos
Endopeptidases/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Adenosina Trifosfatases/metabolismo , Amiloide/metabolismo , Animais , Células Eucarióticas/metabolismo , Humanos , Modelos Biológicos , Príons/metabolismo , Células Procarióticas/metabolismo , Biossíntese de Proteínas , Ubiquitinas/metabolismo
2.
Adv Protein Chem ; 59: 413-29, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11868279

RESUMO

Although much has been learned about the structure and function of Clp chaperones and their role in proteolysis, the mechanism of protein unfolding catalyzed by Clp ATPases and the mechanism of translocation of the unfolded proteins from Clp ATPases to partner proteases remain unsolved puzzles. However, models in which mechanical force is used to destabilize the structure of the substrate in a processive and directional manner are probable. It also seems likely that when ClpA ATPases are associated with proteases, unfolding is coupled to extrusion of the unfolded protein into the proteolytic cavity. In summary, it is anticipated that the large family of Clp ATPases will accomplish their many important cellular functions by similar mechanisms and what has been learned by studying the prokaryotic members reviewed here will shed a great deal of light on all members of the family.


Assuntos
Adenosina Trifosfatases/metabolismo , Desnaturação Proteica , Hidrólise , Chaperonas Moleculares/metabolismo , Especificidade por Substrato
5.
Proc Natl Acad Sci U S A ; 74(7): 2815-9, 1977 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-268632

RESUMO

Escherichia coli dnaG protein is involved in the initiation of DNA synthesis dependent on G4 or ST-1 single-stranded phage DNAs [Bouche, J.-P., Zechel, K & Kornberg, A. (1975) J. Biol. Chem. 250, 5995-6001]. The reaction occurs by the following mechanism: dnaG protein binds to specific sites on the DNA in a reaction requiring E. coli DNA binding protein. An oligonucleotide is synthesized in a reaction involving dnaG protein, DNA binding protein, and DNA. With G4 DNA this reaction requires ADP, dTTP (or UTP), and dGTP (or GTP). Elongation of the oligonucleotide can be catalyzed by DNA polymerase II or III in combination with dnaZ protein and DNA elongation factors I and III, presumably by the mechanism previously reported [Wickner, S. (1976) Proc. Natl. Acad. Sci. USA 73, 3511-3515] or by DNA polymerase I.


Assuntos
Proteínas de Bactérias/metabolismo , Colífagos/metabolismo , DNA Viral/biossíntese , Oligonucleotídeos/metabolismo , Replicação Viral , Difosfato de Adenosina/metabolismo , DNA Circular/biossíntese , DNA de Cadeia Simples/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Guanosina Trifosfato/metabolismo , RNA/metabolismo , Temperatura
6.
Proc Natl Acad Sci U S A ; 73(10): 3511-5, 1976 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-790389

RESUMO

Elongation of a primed single-stranded DNA template catalyzed by E. coli DNA polymerase III (DNA nucleotidyltransferase, deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC 2.7.7.7) requires dnaZ protein and two other protein factors, DNA elongation factors I and III. The reaction occurs by the following mechanism: (i) dnaZ protein and DNA elongation factor III together catalyze the transfer of DNA elongation factor I to a primed DNA template. This transfer reaction requires ATP or dATP in addition to dnaZ protein, DNA elongation factors I and III, and primed template; it does not require DNA polymerase III. (ii) DNA polymerase III binds to the complex of DNA elongation factor I with primed template; it does not bind to primed template which is not complexed with DNA elongation factor I. This binding reaction proceeds in the absence of ATP or dATP as cofactor, dnaZ protein, and DNA elongation factor III and without additional DNA elongation factor I. (iii) The complex of DNA polymerase III, DNA elongation factor I, and primed template catalyzes DNA synthesis upon the addition of dNTPs.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Cinética , Modelos Biológicos , Poli dA-dT/metabolismo , Ligação Proteica , Moldes Genéticos
7.
J Biol Chem ; 259(22): 14038-43, 1984 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-6150040

RESUMO

The product of bacteriophage P22 gene 12 is known from genetic experiments to be essential for phage DNA replication. The P22 12 protein has been purified to near homogeneity from Escherichia coli lysogenic for lambda-P22 hybrid phage containing the replication genes of P22. The protein has a subunit molecular weight of 46,000. The purified protein contains ATPase activity that is stimulated by single-stranded DNA. The ATPase is poorly stimulated by double-stranded DNA. All four ribonucleoside triphosphates are hydrolyzed; none of the deoxynucleoside triphosphates are hydrolyzed. In addition, the P22 12 protein binds to single-stranded DNA in the presence of ATP. Studies of oligonucleotide synthesis by P22 12 protein in conjunction with E. coli dnaG primase are presented in the succeeding paper (Wickner, S. (1984) J. Biol. Chem. 259, 14044-14047).


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases , Fagos de Salmonella/genética , Proteínas Virais/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/isolamento & purificação , Bacteriófago lambda/genética , DNA Primase , Replicação do DNA , Escherichia coli , Etilmaleimida/farmacologia , Hidrólise , Peso Molecular , Nucleotídeos/metabolismo , RNA Nucleotidiltransferases/isolamento & purificação
8.
J Biol Chem ; 259(22): 14044-7, 1984 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-6238958

RESUMO

The phage P22 gene 12 protein was found to be like the Escherichia coli dnaB protein in that it stimulated phiX174 DNA synthesis in heat-inactivated extracts of dnaB temperature-sensitive cells (see preceding paper, Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043). phiX174 replication catalyzed by the purified P22 12 protein also by-passed the normal requirement for dnaC protein. However, synthesis still required dnaG primase and the DNA polymerase III holoenzyme components. This DNA synthesis reaction has been reconstituted with purified proteins and found to require P22 12 protein, dnaG protein, DNA polymerase III holoenzyme components, 4 dNTPs, Mg2+, any one of ATP, GTP, UTP, or CTP and single-stranded DNA. The reaction has been dissected into partial reactions: (a) in a prepriming reaction, P22 12 protein binds to single-stranded DNA in an ATP-dependent reaction (Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043); (b) in a priming reaction requiring at least one rNTP and the other dNTPs or rNTPs, dnaG primase catalyzes oligonucleotide synthesis dependent on the P22 12 protein-DNA complex; (c) finally, DNA polymerase III holoenzyme components catalyze DNA elongation of the primer.


Assuntos
Proteínas de Bactérias/metabolismo , Oligonucleotídeos/biossíntese , RNA Nucleotidiltransferases/metabolismo , Fagos de Salmonella/metabolismo , Proteínas Virais/metabolismo , Bacteriófago phi X 174/genética , DNA Polimerase III/metabolismo , DNA Primase , DNA de Cadeia Simples/metabolismo
9.
Proc Natl Acad Sci U S A ; 87(7): 2690-4, 1990 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2181445

RESUMO

DNA containing the plasmid origin of bacteriophage P1 is replicated in vitro by a protein fraction prepared from uninfected Escherichia coli supplemented with purified P1 RepA protein. It has previously been shown that the reaction required the E. coli DnaA initiator protein, the DnaB helicase, DnaC protein, RNA polymerase, and DNA gyrase. I show here that three E. coli heat shock proteins, DnaJ, DnaK, and GrpE, are directly involved in P1 plasmid replication. Purified DnaJ, DnaK, and GrpE proteins were required to stimulate P1 plasmid ori DNA-dependent replication in in vitro complementation assays in which the host protein fractions were prepared from cells mutated in the corresponding gene. I have also found that the DnaJ and RepA proteins form a complex. This complex exists in crude cell extracts and can be isolated as a molecular species of about 160,000 Da containing one dimer of DnaJ protein and one dimer of RepA. The complex can also be reconstituted by mixing purified DnaJ and RepA proteins. These results imply that the DnaJ-RepA complex, DnaK, and GrpE are directly involved in P1 plasmid replication.


Assuntos
Proteínas de Bactérias/genética , Colífagos/genética , DNA Helicases , Replicação do DNA , Proteínas de Ligação a DNA , Escherichia coli/genética , Proteínas de Choque Térmico/genética , Plasmídeos , Proteínas , Transativadores , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Colífagos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Teste de Complementação Genética , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/metabolismo , Cinética , Modelos Biológicos
10.
Proc Natl Acad Sci U S A ; 72(9): 3342-6, 1975 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-127175

RESUMO

phiX174 DNA-dependent DNA synthesis is catalyzed in vitro by the combination of at least 11 purified protein fractions: dnaB, dnaC(D), and dnaG gene products, DNA polymerase III, DNA elongation factors I and II, DNA binding protein, and replication factors W, X, Y, and Z. The reaction requires ATP, 4 dNTPs, and Mg+2 and is specific for phiX174 (or phiXahb) DNA. Purified replication factor Y contains phiX174 (or phiXahb) DNA-dependent ATPase (or dATPase) activity. The ATPase activity is poorly stimulated by other single-stranded DNA, by double-stranded DNA, or by RNA. The products of the phiX174 DNA-dependent ATPase activity of factor Y are Pi and ADP (or dADP). The association of phiX174 DNA-dependent ATPase activity with factor Y was shown in the following ways: (a) the two activities copurified with a constant ratio; (b) they comigrated on native polyacrylamide gel electrophoresis; (c) both activities were heat-inactivated at the same rate; and (d) both showed identical patterns of N-ethylmaleimide sensitivity.


Assuntos
Adenosina Trifosfatases/metabolismo , Colífagos/metabolismo , Replicação do DNA , DNA Viral/biossíntese , Escherichia coli/enzimologia , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/antagonistas & inibidores , Sistema Livre de Células , DNA Viral/farmacologia , Ativação Enzimática , Etilmaleimida/farmacologia , Temperatura Alta
11.
J Biol Chem ; 270(44): 26282-5, 1995 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-7592837

RESUMO

DnaK, DnaJ, and GrpE heat shock proteins of Escherichia coli activate site-specific DNA binding by the RepA replication initiator protein of plasmid P1 in a reaction dependent on ATP and Mg2+. We previously showed that GrpE is essential for in vitro RepA activation specifically at about 1 microM free Mg2+. In this paper, we demonstrate that GrpE lowers the requirement of DnaK ATPase for Mg2+, resulting in a large stimulation of ATP hydrolysis at about 1 microM Mg2+ with and without DnaJ and RepA. In contrast to its effect on the Mg2+ requirement, GrpE increases the ATP requirement for DnaK ATPase and dramatically lowers the affinity of DnaK for ATP in the absence of Mg2+. We propose that GrpE not only lowers the affinity of DnaK for nucleotide but, by increasing affinity of DnaK for Mg2+, also weakens the interactions of Mg2+ with nucleotide prior to its release.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , DNA Helicases , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Magnésio/metabolismo , Proteínas , Transativadores , Proteínas de Bactérias/farmacologia , Replicação do DNA , Proteínas de Choque Térmico/farmacologia , Cinética
12.
Proc Natl Acad Sci U S A ; 94(10): 4901-6, 1997 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-9144162

RESUMO

ClpA, a newly discovered ATP-dependent molecular chaperone, remodels bacteriophage P1 RepA dimers into monomers, thereby activating the latent specific DNA binding activity of RepA. We investigated the mechanism of the chaperone activity of ClpA by dissociating the reaction into several steps and determining the role of nucleotide in each step. In the presence of ATP or a nonhydrolyzable ATP analog, the initial step is the self-assembly of ClpA and its association with inactive RepA dimers. ClpA-RepA complexes form rapidly and at 0 degrees C but are relatively unstable. The next step is the conversion of unstable ClpA-RepA complexes into stable complexes in a time- and temperature-dependent reaction. The transition to stable ClpA-RepA complexes requires binding of ATP, but not ATP hydrolysis, because nonhydrolyzable ATP analogs satisfy the nucleotide requirement. The stable complexes contain approximately 1 mol of RepA dimer per mol of ClpA hexamer and are committed to activating RepA. In the last step of the reaction, active RepA is released upon exchange of ATP with the nonhydrolyzable ATP analog and ATP hydrolysis. Importantly, we discovered that one cycle of RepA binding to ClpA followed by ATP-dependent release is sufficient to convert inactive RepA to its active form.


Assuntos
Adenosina Trifosfatases/metabolismo , DNA Helicases , Proteínas de Ligação a DNA , Proteínas/química , Proteínas/metabolismo , Serina Endopeptidases/metabolismo , Transativadores , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Bacteriófago P1/metabolismo , Dimerização , Endopeptidase Clp , Cinética , Modelos Estruturais , Ligação Proteica , Biossíntese de Proteínas , Proteínas Recombinantes/metabolismo , Proteínas Virais/biossíntese , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Proc Natl Acad Sci U S A ; 72(3): 921-5, 1975 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-1093174

RESUMO

Purified E. coli dnaB and dnaC(D) gene products interact physically and functionally in vitro. This interaction was demonstrated as follows: (a) A complex of dnaB and dnaC(D) gene products was isolated by gel filtration; ATP specifically was required for isolation of the complex. (b) The DNA-independent ribonucleoside triphosphatase activity associated with dnaB gene product was inhibited by dnaC(D) gene product. (c) The dnaC(D) gene product was protected from inactivation by N-ethyl-maleimide by the combination of dnaB gene product and ATP; this protection required ATP specifically.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano , Escherichia coli/metabolismo , Genes , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/isolamento & purificação , Cromatografia em Gel , Replicação do DNA , DNA Bacteriano/metabolismo , Etilmaleimida/farmacologia
14.
Proc Natl Acad Sci U S A ; 73(4): 1053-7, 1976 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-772677

RESUMO

E. coli dnaZ gene product is required for conversion of phiX174, fd, and ST-1 single-stranded phage DNAs to duplex DNAs in vitro. This protein has been purified about 5000-fold. It functions in the elongation of RNA- or DNA-primed single-stranded DNA that is catalyzed by DNA polymerase III(DNA nucleotidyltransferase; deoxynucleosidetriphosphate: DNA deoxynucleotidyltransferase; EC 2.7.7.7) in conjunctions with two other E. coli protein preparations referred to as DNA elongation factors I and III. It also functions in similar reactions catalyzed by DNA polymerase II in combination with E. coli DNA binding protein and DNA elongation factors I and III.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/biossíntese , Escherichia coli/metabolismo , Genes , Proteínas de Bactérias/isolamento & purificação , Sistema Livre de Células , DNA Nucleotidiltransferases/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo
15.
J Biol Chem ; 262(27): 13163-7, 1987 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-2958451

RESUMO

Supercoiled DNA containing the replication origin of bacteriophage lambda can be replicated in vitro. This reaction requires purified lambda O and P replication proteins and a partially purified mixture of Escherichia coli proteins (Tsurimoto, T., and Matsubara, K. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7639-7643; Wold, M. S., Mallory, J.B., Roberts, J. D., LeBowitz, J. H., and McMacken, R. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6176-6180). The lambda origin region has four repeats of a 19-base pair sequence to which O protein binds. To the right of these sites on the lambda map is a 40-base pair region that is rich in adenine and thymine, followed by a 28-base pair palindromic sequence. To define more precisely the boundaries of the lambda origin, we cloned a 358-base pair piece of lambda DNA containing the origin region into M13mp8 in both orientations. In vitro replication of RF I DNAs prepared from cells infected with these two M13 ori lambda phage was dependent on lambda O and P proteins and a crude protein fraction from uninfected E. coli; with these conditions there was no replication of M13mp8 RF I DNA. We made deletions from the left and the right ends of the lambda origin DNA and determined the deletion end points by DNA sequencing. We have tested RF I DNAs prepared from cells infected with phage carrying ori lambda deletions for their ability to function as templates for O- and P-dependent replication in vitro. Our results show that lambda DNA between nucleotide positions 39072 and 39160 is required for efficient O- and P-dependent replication. This 89-base pair piece of DNA includes only two of the four 19-base pair O protein-binding sites (the two right-most) and the adjoining adenine- and thymine-rich region to the right of the O-binding sites.


Assuntos
Replicação do DNA , Escherichia coli/genética , Genes Virais , Bacteriófago lambda/genética , Sequência de Bases , Deleção Cromossômica , DNA Viral/genética , Dados de Sequência Molecular , Replicação Viral
16.
Proc Natl Acad Sci U S A ; 71(1): 6-10, 1974 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-4589895

RESUMO

The in vitro conversion of single-stranded DNA from bacteriophage fd to duplex structures depends on E. coli RNA polymerase, DNA polymerase III, riboand deoxyribonucleoside triphosphates, Mg(+2), spermidine or DNA-unwinding protein of E. coli, and two additional protein factors, referred to here as Factors I and II. These two factors are also essential for dTMP incorporation catalyzed by DNA polymerase III and dependent on poly(dA).oligo(dT) primer-template. In the latter reaction, there is an absolute dependency on ATP or dATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Colífagos , DNA Nucleotidiltransferases/metabolismo , DNA Viral/biossíntese , Escherichia coli/enzimologia , Nucleotídeos de Adenina , Proteínas de Bactérias/isolamento & purificação , Cromatografia DEAE-Celulose , Cromatografia por Troca Iônica , DNA de Cadeia Simples/metabolismo , DNA Viral/isolamento & purificação , Escherichia coli/análise , Técnicas In Vitro , Hibridização de Ácido Nucleico , Nucleotídeos/metabolismo , Radioisótopos de Fósforo , Polinucleotídeos , RNA Viral , Moldes Genéticos , Nucleotídeos de Timina/metabolismo , Trítio
17.
Proc Natl Acad Sci U S A ; 71(10): 4120-4, 1974 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-4610569

RESUMO

The E. coli proteins that catalyze the conversion of varphiX174 single-stranded DNA to duplex DNA have now been purified extensively. The reaction depends on dnaB, dnaC(D), dnaE, and dnaG gene products, DNA elongation factors I and II, E. coli DNA binding protein, and two additional E. coli proteins, replication factors X and Y. DNA synthesis by these proteins requires varphiX174 viral DNA, dNTPs, Mg(+2), and ATP. The product synthesized is full-length linear varphiX174 DNA. The reaction has been resolved into two steps. The first step involves the interaction of ATP and varphiX174 DNA with dnaB and dnaC(D) gene products, E. coli DNA binding protein, and replication factors X and Y in the absence of dNTPs. Subsequent dNMP incorporation requires the addition of DNA polymerase III, DNA elongation factors I and II, dnaG gene product, and dNTPs.


Assuntos
Proteínas de Bactérias/metabolismo , Colífagos , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Escherichia coli , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/isolamento & purificação , DNA Nucleotidiltransferases/metabolismo , Replicação do DNA , Vírus de DNA , DNA Viral/biossíntese , Desoxirribonucleotídeos/metabolismo , Escherichia coli/metabolismo , Ligação Proteica
18.
J Biol Chem ; 268(34): 25296-301, 1993 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-8244960

RESUMO

Genetic and biochemical studies have established that the sole function of the Escherichia coli DnaJ, DnaK, and GrpE heat shock proteins in plasmid P1 DNA replication is to convert RepA dimers to monomers. Monomers bind avidly to oriP1 DNA and initiate DNA replication. However, with purified heat shock proteins, only DnaJ, DnaK, and ATP were required for the monomerization of RepA; GrpE was not required. We have found reaction conditions that mimic the physiological situation. GrpE function is absolutely necessary for RepA activation in vitro with DnaJ and DnaK when the free Mg2+ concentration is maintained at a level of approximately 1 microM by a metal ion buffer system. EDTA or physiological metabolites, including citrate, phosphate, pyrophosphate, and ATP, all elicit the GrpE requirement. With these metal ion-buffering systems, GrpE specifically lowers the concentration of Mg2+ required for the RepA activation reaction. The absence of Mg2+ blocks activation and high levels of Mg2+ in solution bypass the requirement for GrpE but not for the other two heat shock proteins. Our results imply that GrpE facilitates the utilization of Mg2+ for an essential step in RepA activation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/metabolismo , Cloreto de Magnésio/farmacologia , Proteínas , Transativadores , Replicação do DNA , Difosfatos/farmacologia , Ácido Edético/farmacologia , Escherichia coli/genética , Proteínas de Choque Térmico HSP40 , Cinética , Substâncias Macromoleculares , Magnésio/metabolismo , Plasmídeos
19.
Proc Natl Acad Sci U S A ; 88(18): 7903-7, 1991 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-1896443

RESUMO

DnaK is a major heat shock protein of Escherichia coli and the homolog of hsp70 in eukaryotes. We demonstrate the mechanism by which DnaK and another heat shock protein, DnaJ, render the plasmid P1 initiator RepA 100-fold more active for binding to the P1 origin of replication. Activation is the conversion of RepA dimers into monomers in an ATP-dependent reaction and the monomer form binds with high affinity to oriP1 DNA. Reversible chemical denaturants also convert RepA dimers to monomers and simultaneously activate oriP1 DNA binding. Increasing protein concentration converts monomers to dimers and deactivates RepA. Based on our data and previous work, we present a model for heat shock protein action under normal and stress conditions.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases , Replicação do DNA , Proteínas de Escherichia coli , Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/fisiologia , Proteínas , Transativadores , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Substâncias Macromoleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
20.
Nature ; 350(6314): 165-7, 1991 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-2005967

RESUMO

Heat-shock proteins are normal constituents of cells whose synthesis is increased on exposure to various forms of stress. They are interesting because of their ubiquity and high conservation during evolution. Two families of heat-shock proteins, hsp60s and hsp70s, have been implicated in accelerating protein folding and oligomerization and also in maintaining proteins in an unfolded state, thus facilitating membrane transport. The Escherichia coli hsp70 analogue, DnaK, and two other heat-shock proteins, DnaJ and GrpE, are required for cell viability at high temperatures and are involved in DNA replication of phage lambda and plasmids P1 and F. These three proteins are involved in replication in vitro of P1 DNA along with many host replication proteins and the P1 RepA initiator protein. RepA exists in a stable protein complex with DnaJ containing a dimer each of RepA and DnaJ. We report here that DnaK and DnaJ mediate an alteration in the P1 initiator protein, rendering it much more active for oriP1 DNA binding.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico/metabolismo , Proteínas , Transativadores , Trifosfato de Adenosina/metabolismo , Western Blotting , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Proteínas de Choque Térmico HSP40 , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA