Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 161(5): 1112-1123, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25959773

RESUMO

Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the ß-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and ß-tubulin, and a flexible cationic domain to bind the microtubule and position itself for ß-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Sintases/genética , Alinhamento de Sequência
2.
Cell ; 142(3): 433-43, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20691902

RESUMO

Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively "mark" antiparallel overlap in dynamic cytoskeletal networks.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Espectrina/metabolismo
3.
Nature ; 449(7158): 87-91, 2007 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-17805295

RESUMO

Hair cells of the inner ear are mechanosensors that transduce mechanical forces arising from sound waves and head movement into electrochemical signals to provide our sense of hearing and balance. Each hair cell contains at the apical surface a bundle of stereocilia. Mechanoelectrical transduction takes place close to the tips of stereocilia in proximity to extracellular tip-link filaments that connect the stereocilia and are thought to gate the mechanoelectrical transduction channel. Recent reports on the composition, properties and function of tip links are conflicting. Here we demonstrate that two cadherins that are linked to inherited forms of deafness in humans interact to form tip links. Immunohistochemical studies using rodent hair cells show that cadherin 23 (CDH23) and protocadherin 15 (PCDH15) localize to the upper and lower part of tip links, respectively. The amino termini of the two cadherins co-localize on tip-link filaments. Biochemical experiments show that CDH23 homodimers interact in trans with PCDH15 homodimers to form a filament with structural similarity to tip links. Ions that affect tip-link integrity and a mutation in PCDH15 that causes a recessive form of deafness disrupt interactions between CDH23 and PCDH15. Our studies define the molecular composition of tip links and provide a conceptual base for exploring the mechanisms of sensory impairment associated with mutations in CDH23 and PCDH15.


Assuntos
Caderinas/metabolismo , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/metabolismo , Precursores de Proteínas/metabolismo , Animais , Caderinas/deficiência , Caderinas/genética , Linhagem Celular , Surdez/genética , Dimerização , Genes Recessivos/genética , Cobaias , Humanos , Camundongos , Mutação/genética , Ligação Proteica , Precursores de Proteínas/genética
4.
J Struct Biol ; 177(2): 335-43, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22245547

RESUMO

Homohexameric, N-Ethylmaleimide Sensitive Factor (NSF) disassembles Soluble NSF Attachment Protein Receptor (SNARE) complexes after membrane fusion, an essential step in vesicular trafficking. NSF contains three domains (NSF-N, NSF-D1, and NSF-D2), each contributing to activity. We combined electron microscopic (EM) analysis, analytical ultracentrifugation (AU) and functional mutagenesis to visualize NSF's ATPase cycle. 3D density maps show that NSF-D2 remains stable, whereas NSF-N undergoes large conformational changes. NSF-Ns splay out perpendicular to the ADP-bound hexamer and twist upwards upon ATP binding, producing a more compact structure. These conformations were confirmed by hydrodynamic, AU measurements: NSF-ATP sediments faster with a lower frictional ratio (f/f(0)). Hydrodynamic analyses of NSF mutants, with specific functional defects, define the structures underlying these conformational changes. Mapping mutations onto our 3D models allows interpretation of the domain movement and suggests a mechanism for NSF binding to and disassembly of SNARE complexes.


Assuntos
Nucleotídeos de Adenina/química , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas SNARE/metabolismo , Substituição de Aminoácidos , Animais , Células CHO , Cricetinae , Microscopia Eletrônica , Modelos Moleculares , Proteínas Sensíveis a N-Etilmaleimida/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Ultracentrifugação
5.
Nat Cell Biol ; 24(7): 1088-1098, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35725768

RESUMO

A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.


Assuntos
Cinesinas , Fatores de Transcrição , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Mimetismo Molecular , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
6.
Elife ; 92020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31958056

RESUMO

Kinesin-5 motors organize mitotic spindles by sliding apart microtubules. They are homotetramers with dimeric motor and tail domains at both ends of a bipolar minifilament. Here, we describe a regulatory mechanism involving direct binding between tail and motor domains and its fundamental role in microtubule sliding. Kinesin-5 tails decrease microtubule-stimulated ATP-hydrolysis by specifically engaging motor domains in the nucleotide-free or ADP states. Cryo-EM reveals that tail binding stabilizes an open motor domain ATP-active site. Full-length motors undergo slow motility and cluster together along microtubules, while tail-deleted motors exhibit rapid motility without clustering. The tail is critical for motors to zipper together two microtubules by generating substantial sliding forces. The tail is essential for mitotic spindle localization, which becomes severely reduced in tail-deleted motors. Our studies suggest a revised microtubule-sliding model, in which kinesin-5 tails stabilize motor domains in the microtubule-bound state by slowing ATP-binding, resulting in high-force production at both homotetramer ends.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Humanos , Hidrólise , Cinesinas/química , Cinesinas/ultraestrutura , Cinética , Ligação Proteica , Domínios Proteicos , Fuso Acromático/metabolismo
7.
Dev Cell ; 49(5): 711-730.e8, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31031197

RESUMO

The correct localization of Hedgehog effectors to the tip of primary cilia is critical for proper signal transduction. The conserved non-motile kinesin Kif7 defines a "cilium-tip compartment" by localizing to the distal ends of axonemal microtubules. How Kif7 recognizes microtubule ends remains unknown. We find that Kif7 preferentially binds GTP-tubulin at microtubule ends over GDP-tubulin in the mature microtubule lattice, and ATP hydrolysis by Kif7 enhances this discrimination. Cryo-electron microscopy (cryo-EM) structures suggest that a rotated microtubule footprint and conformational changes in the ATP-binding pocket underlie Kif7's atypical microtubule-binding properties. Finally, Kif7 not only recognizes but also stabilizes a GTP-form of tubulin to promote its own microtubule-end localization. Thus, unlike the characteristic microtubule-regulated ATPase activity of kinesins, Kif7 modulates the tubulin mechanochemical cycle. We propose that the ubiquitous kinesin fold has been repurposed in Kif7 to facilitate organization of a spatially restricted platform for localization of Hedgehog effectors at the cilium tip.


Assuntos
Cílios/fisiologia , Guanosina Trifosfato/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Humanos , Cinesinas/química , Cinesinas/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Transdução de Sinais , Tubulina (Proteína)/genética
8.
FEBS Lett ; 581(5): 809-14, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17292892

RESUMO

There is great interest in the structure of adiponectin as its oligomeric state may specify its biological activities. It occurs as a trimer, a hexamer and a high molecular weight complex. Epidemiological data indicate that the high molecular weight form is significant with low serum levels in type 2 diabetics but to date, has not been well-defined. To resolve this issue, characterization of this oligomer from bovine serum and 3T3-L1 adipocytes by sedimentation equilibrium centrifugation and gel electrophoresis respectively, was carried out, revealing that it is octadecameric. Further studies by dynamic light scattering and electron microscopy established that bovine and possibly mouse high molecular weight adiponectin is C1q-like in structure.


Assuntos
Adiponectina/química , Células 3T3-L1 , Adipócitos/metabolismo , Adiponectina/isolamento & purificação , Animais , Bovinos , Complemento C1q/química , Diabetes Mellitus Tipo 2/sangue , Humanos , Camundongos , Microscopia Eletrônica , Peso Molecular , Estrutura Quaternária de Proteína
9.
Elife ; 62017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841134

RESUMO

Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Sítios de Ligação , Linhagem Celular , Segregação de Cromossomos , Proteínas do Citoesqueleto , Humanos , Modelos Biológicos , Ligação Proteica
10.
Mol Biol Cell ; 27(8): 1197-203, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26941333

RESUMO

During cell division, kinetochores must remain tethered to the plus ends of dynamic microtubule polymers. However, the molecular basis for robust kinetochore-microtubule interactions remains poorly understood. The conserved four-subunit Ndc80 complex plays an essential and direct role in generating dynamic kinetochore-microtubule attachments. Here we compare the binding of theCaenorhabditis elegansand human Ndc80 complexes to microtubules at high resolution using cryo-electron microscopy reconstructions. Despite the conserved roles of the Ndc80 complex in diverse organisms, we find that the attachment mode of these complexes for microtubules is distinct. The human Ndc80 complex binds every tubulin monomer along the microtubule protofilament, whereas theC. elegansNdc80 complex binds more tightly to ß-tubulin. In addition, theC. elegansNdc80 complex tilts more toward the adjacent protofilament. These structural differences in the Ndc80 complex between different species may play significant roles in the nature of kinetochore-microtubule interactions.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Microscopia Crioeletrônica , Proteínas do Citoesqueleto , Cinetocoros/metabolismo , Modelos Moleculares , Conformação Proteica , Tubulina (Proteína)/metabolismo
11.
Nat Cell Biol ; 16(9): 852-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25173975

RESUMO

Proper microtubule nucleation during cell division requires augmin, a microtubule-associated hetero-octameric protein complex. In current models, augmin recruits γ-tubulin, through the carboxyl terminus of its hDgt6 subunit to nucleate microtubules within spindles. However, augmin's biochemical complexity has restricted analysis of its structural organization and function. Here, we reconstitute human augmin and show that it is a Y-shaped complex that can adopt multiple conformations. Further, we find that a dimeric sub-complex retains in vitro microtubule-binding properties of octameric complexes, but not proper metaphase spindle localization. Addition of octameric augmin complexes to Xenopus egg extracts promotes microtubule aster formation, an activity enhanced by Ran-GTP. This activity requires microtubule binding, but not the characterized hDgt6 γ-tubulin-recruitment domain. Tetrameric sub-complexes induce asters, but activity and microtubule bundling within asters are reduced compared with octameric complexes. Together, our findings shed light on augmin's structural organization and microtubule-binding properties, and define subunits required for its function in organizing microtubule-based structures.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Animais , Sistema Livre de Células , Escherichia coli , Humanos , Metáfase , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Xenopus laevis
12.
Dev Cell ; 23(5): 968-80, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23085020

RESUMO

To ensure equal chromosome segregation during mitosis, the macromolecular kinetochore must remain attached to depolymerizing microtubules, which drive chromosome movements. How kinetochores associate with depolymerizing microtubules, which undergo dramatic structural changes forming curved protofilaments, has yet to be defined in vertebrates. Here, we demonstrate that the conserved kinetochore-localized Ska1 complex tracks with depolymerizing microtubule ends and associates with both the microtubule lattice and curved protofilaments. In contrast, the Ndc80 complex, a central player in the kinetochore-microtubule interface, binds only to the straight microtubule lattice and lacks tracking activity. We demonstrate that the Ska1 complex imparts its tracking capability to the Ndc80 complex. Finally, we present a structure of the Ska1 microtubule-binding domain that reveals its interaction with microtubules and its regulation by Aurora B. This work defines an integrated kinetochore-microtubule interface formed by the Ska1 and Ndc80 complexes that associates with depolymerizing microtubules, potentially by interacting with curved microtubule protofilaments.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Proteínas do Citoesqueleto , Células HeLa , Humanos , Microtúbulos/ultraestrutura , Mitose , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Especificidade da Espécie , Eletricidade Estática
13.
Methods Enzymol ; 481: 45-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20887852

RESUMO

Helical protein arrays offer unique advantages for structure determination by cryo-electron microscopy (cryo-EM). A single image of such an array contains a complete range of equally spaced molecular views of the underlying protein subunits, which allows a low-resolution, isotropic three-dimensional (3D) map to be generated from a single helical tube without tilting the sample in the electron beam as is required for two-dimensional (2D) crystals. Averaging many unit cells from a number of similar tubes can improve the signal-to-noise ratio and consequently, the quality of the 3D map. This approach has yielded reconstructions that approach atomic resolution [Miyazawa et al., 1999, 2003; Sachse et al., 2007; Unwin, 2005; Yonekura et al., 2005]. Proteins that naturally adopt helical protein arrays, such as actin and microtubules, have been studied for decades. The wealth of information on how proteins bind and move along these cytoskeletal tracks, provide cross-talk between tracks, and integrate into the cellular machinery is due, in part, to multiple EM studies of the helical assemblies. Since the majority of proteins do not spontaneously form helical arrays, the power of helical image analysis has only been realized for a small number of proteins. This chapter describes the use of functionalized lipid nanotubes and liposomes as substrates to bind and form helical arrays of soluble and membrane-associated proteins.


Assuntos
Microscopia Crioeletrônica/métodos , Cristalografia/métodos , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Proteínas/química , Proteínas/ultraestrutura
14.
Dev Cell ; 16(3): 374-85, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19289083

RESUMO

Mitotic chromosome segregation requires that kinetochores attach to microtubule polymers and harness microtubule dynamics to drive chromosome movement. In budding yeast, the Dam1 complex couples kinetochores with microtubule depolymerization. However, a metazoan homolog of the Dam1 complex has not been identified. To identify proteins that play a corresponding role at the vertebrate kinetochore-microtubule interface, we isolated a three subunit human Ska1 complex, including the previously uncharacterized protein Rama1 that localizes to the outer kinetochore and spindle microtubules. Depletion of Ska1 complex subunits severely compromises proper chromosome segregation. Reconstituted Ska1 complex possesses two separable biochemical activities: direct microtubule binding through the Ska1 subunit, and microtubule-stimulated oligomerization imparted by the Rama1 subunit. The full Ska1 complex forms assemblies on microtubules that can facilitate the processive movement of microspheres along depolymerizing microtubules. In total, these results demonstrate a critical role for the Ska1 complex in interacting with dynamic microtubules at the outer kinetochore.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Sequência de Bases , Linhagem Celular , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Humanos , Microscopia Eletrônica de Transmissão , Microesferas , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Mitose/fisiologia , Modelos Biológicos , Movimento/fisiologia , Complexos Multiproteicos , Ligação Proteica , Subunidades Proteicas , RNA Interferente Pequeno/genética , Especificidade da Espécie
15.
J Cell Biol ; 182(6): 1055-61, 2008 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-18794333

RESUMO

The four-subunit Ndc80 complex, comprised of Ndc80/Nuf2 and Spc24/Spc25 dimers, directly connects kinetochores to spindle microtubules. The complex is anchored to the kinetochore at the Spc24/25 end, and the Ndc80/Nuf2 dimer projects outward to bind to microtubules. Here, we use cryoelectron microscopy and helical image analysis to visualize the interaction of the Ndc80/Nuf2 dimer with microtubules. Our results, when combined with crystallography data, suggest that the globular domain of the Ndc80 subunit binds strongly at the interface between tubulin dimers and weakly at the adjacent intradimer interface along the protofilament axis. Such a binding mode, in which the Ndc80 complex interacts with sequential alpha/beta-tubulin heterodimers, may be important for stabilizing kinetochore-bound microtubules. Additionally, we define the binding of the Ndc80 complex relative to microtubule polarity, which reveals that the microtubule interaction surface is at a considerable distance from the opposite kinetochore-anchored end; this binding geometry may facilitate polymerization and depolymerization at kinetochore-attached microtubule ends.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Citoesqueleto , Dimerização , Humanos , Cinetocoros/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
16.
Science ; 322(5908): 1691-5, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-19074350

RESUMO

Dynein motors move various cargos along microtubules within the cytoplasm and power the beating of cilia and flagella. An unusual feature of dynein is that its microtubule-binding domain (MTBD) is separated from its ring-shaped AAA+ adenosine triphosphatase (ATPase) domain by a 15-nanometer coiled-coil stalk. We report the crystal structure of the mouse cytoplasmic dynein MTBD and a portion of the coiled coil, which supports a mechanism by which the ATPase domain and MTBD may communicate through a shift in the heptad registry of the coiled coil. Surprisingly, functional data suggest that the MTBD, and not the ATPase domain, is the main determinant of the direction of dynein motility.


Assuntos
Dineínas/química , Dineínas/metabolismo , Microtúbulos/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Interações Hidrofóbicas e Hidrofílicas , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Movimento , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
17.
Cell ; 127(5): 983-97, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17129783

RESUMO

The microtubule-binding interface of the kinetochore is of central importance in chromosome segregation. Although kinetochore components that stabilize, translocate on, and affect the polymerization state of microtubules have been identified, none have proven essential for kinetochore-microtubule interactions. Here, we examined the conserved KNL-1/Mis12 complex/Ndc80 complex (KMN) network, which is essential for kinetochore-microtubule interactions in vivo. We identified two distinct microtubule-binding activities within the KMN network: one associated with the Ndc80/Nuf2 subunits of the Ndc80 complex, and a second in KNL-1. Formation of the complete KMN network, which additionally requires the Mis12 complex and the Spc24/Spc25 subunits of the Ndc80 complex, synergistically enhances microtubule-binding activity. Phosphorylation by Aurora B, which corrects improper kinetochore-microtubule connections in vivo, reduces the affinity of the Ndc80 complex for microtubules in vitro. Based on these findings, we propose that the conserved KMN network constitutes the core microtubule-binding site of the kinetochore.


Assuntos
Caenorhabditis elegans/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinase B , Aurora Quinases , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/isolamento & purificação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas do Citoesqueleto , Escherichia coli , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/ultraestrutura , Proteínas Nucleares/química , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
18.
J Struct Biol ; 152(2): 129-39, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16242343

RESUMO

To facilitate purification and subsequent structural studies of recombinant proteins the most widely used genetically encoded tag is the histidine tag (His-tag) which specifically binds to N-nitrilotriacetic-acid-chelated nickel ions. Lipids derivatized with a nickel-chelating head group can be mixed with galactosylceramide glycolipids to prepare lipid nanotubes that bind His-tagged proteins. In this study, we use His-tagged perfringolysin O (PFO), a soluble toxin secreted by the bacterial pathogen Clostridium perfringens, as a model protein to test the utility of nickel-lipid nanotubes as a tool for structural studies of His-tagged proteins. PFO is a member of the cholesterol dependent cytolysin family (CDC) of oligomerizing, pore-forming toxins found in a variety of Gram-positive bacterial pathogens. CDC pores have been difficult to study by X-ray crystallography because they are membrane associated and vary in size. We demonstrate that both a wild-type and a mutant form of PFO form helical arrays on nickel-lipid containing nanotubes. Cryo-electron microscopy and image analysis of the helical arrays were used to reconstruct a 3D density map of wild-type PFO. This study suggests that the use of nickel-lipid nanotubes may offer a general approach for structural studies of recombinant proteins and may provide insights into the molecular interactions of proteins that have a natural affinity for a membrane surface.


Assuntos
Toxinas Bacterianas/química , Lipídeos/química , Nanotubos/química , Níquel/química , Proteínas/química , Toxinas Bacterianas/genética , Clostridium perfringens/metabolismo , Microscopia Crioeletrônica , Cristalização , Proteínas Hemolisinas , Histidina/química , Imageamento Tridimensional , Modelos Moleculares , Mutação , Nanotecnologia , Proteínas/ultraestrutura , Difração de Raios X
19.
J Struct Biol ; 150(1): 100-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15797734

RESUMO

Perfringolysin O (PFO), a soluble toxin secreted by the pathogenic Clostridium perfringens, forms large homo-oligomeric pore complexes comprising up to 50 PFO molecules in cholesterol-containing membranes. In this study, electron microscopy (EM) and single-particle image analysis were used to reconstruct two-dimensional (2D) projection maps from images of oligomeric PFO prepore and pore complexes formed on cholesterol-rich lipid layers. The projection maps are characterized by an outer and an inner ring of density peaks. The outer rings of the prepore and pore complexes are very similar; however, the protein densities that make up the inner ring of the pore complex are more intense and discretely resolved than they are for the prepore complex. The change in inner-ring protein density is consistent with a mechanism in which the monomers within the prepore complex make a transition from a partially disordered state to a more ordered transmembrane beta-barrel in the pore complex. Finally, the orientation of the monomers within the oligomeric complexes was determined by visualization of streptavidin (SA) molecules bound to biotinylated cysteine-substituted residues predicted to face either the inner or outer surface of the oligomeric pore complex. This study provides an unprecedented view of the conversion of the PFO prepore to pore complex.


Assuntos
Toxinas Bacterianas/química , Colesterol/química , Clostridium perfringens/metabolismo , Proteínas Hemolisinas , Microscopia Eletrônica , Estrutura Molecular
20.
Proc Natl Acad Sci U S A ; 102(35): 12537-42, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16105950

RESUMO

Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that is an essential virulence factor of Listeria monocytogenes. LLO pore-forming activity is pH-dependent; it is active at acidic pH (<6), but not at neutral pH. In contrast to other pH-dependent toxins, we have determined that LLO pore-forming activity is controlled by a rapid and irreversible denaturation of its structure at neutral pH at temperatures >30 degrees C. Rapid denaturation is triggered at neutral pH by the premature unfolding of the domain 3 transmembrane beta-hairpins; structures that normally form the transmembrane beta-barrel. A triad of acidic residues within domain 3 function as the pH sensor and initiate the denaturation of LLO by destabilizing the structure of domain 3. These studies provide a view of a molecular mechanism by which the activity of a bacterial toxin is regulated by pH.


Assuntos
Toxinas Bacterianas/química , Proteínas de Choque Térmico/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Genes Bacterianos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/toxicidade , Proteínas de Choque Térmico/ultraestrutura , Proteínas Hemolisinas , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos , Mutação Puntual , Conformação Proteica , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidade , Proteínas Recombinantes/ultraestrutura , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA