RESUMO
In the last decade, next-generation sequencing (NGS) technology, alternatively massive parallel sequencing (MPS), was applied to all fields of biological research. Its introduction to the field of forensics was slower, mainly due to lack of accredited sequencers, kits, and relatively higher sequencing error rates as compared with standardized Sanger sequencing. Currently, a majority of the problematic issues have been solved, which is proven by the body of reports in the literature. Here, we discuss the utility of NGS sequencing in forensics, emphasizing the advantages, issues, the technical aspects of the experiments, commercial solutions, and the potentially interesting applications of MPS.
Assuntos
Ciências Forenses , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/tendênciasRESUMO
Methylsulfinyl hexyl isothiocyanate (6-MSITC) isolated from Eutrema japonicum is a promising candidate for the treatment of breast cancer, colorectal and stomach cancer, metabolic syndrome, heart diseases, diabetes, and obesity due to its anti-inflammatory and antioxidant properties. Also, its neuroprotective properties, improving cognitive function and protecting dopaminergic neurons, make it an excellent candidate for treating neurodegenerative diseases like dementia, Alzheimer's, and Parkinson's disease. 6-MSITC acts on many signaling pathways, such as PPAR, AMPK, PI3K/AKT/mTOR, Nrf2/Keap1-ARE, ERK1/2-ELK1/CHOP/DR5, and MAPK. However, despite the very promising results of in vitro and in vivo animal studies and a few human studies, the molecule has not yet been thoroughly tested in the human population. Nonetheless, wasabi should be classified as a "superfood" for the primary and secondary prevention of human diseases. This article reviews the current state-of-the-art research on 6-MSITC and its potential clinical uses, discussing in detail the signaling pathways activated by the molecule and their interactions.
Assuntos
Doença de Alzheimer , Isotiocianatos , Neoplasias , Obesidade , Wasabia , Humanos , Doença de Alzheimer/tratamento farmacológico , Neoplasias/tratamento farmacológico , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Obesidade/tratamento farmacológico , Animais , Wasabia/química , Transdução de Sinais/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologiaRESUMO
The bioavailability levels of cannabidiol (CBD) and tetrahydrocannabinol (THC) determine their pharmacological effects. Therefore, for medical purposes, it is essential to obtain extracts containing the lowest possible content of the psychogenic component THC. In our extract, the CBD/THC ratio was 16:1, which is a high level compared to available medical preparations, where it is, on average, 1:1. This study assessed the bioavailability and stability of CBD and THC derived from Cannabis sativa L. with reduced THC content. The extract was orally administered (30 mg/kg) in two solvents, Rapae oleum and Cremophor, to forty-eight Wistar rats. The whole-blood and brain concentrations of CBD and THC were measured using liquid chromatography coupled with mass spectrometry detection. Much higher concentrations of CBD than THC were observed for both solvents in the whole-blood and brain after oral administration of the Cannabis sativa extract with a decreased THC content. The total bioavailability of both CBD and THC was higher for Rapae oleum compared to Cremophor. Some of the CBD was converted into THC in the body, which should be considered when using Cannabis sativa for medical purposes. The THC-reduced hemp extract in this study is a promising candidate for medical applications.
Assuntos
Canabidiol , Canabinoides , Cannabis , Animais , Ratos , Cannabis/química , Solventes , Disponibilidade Biológica , Ratos Wistar , Extratos Vegetais/química , Óleos de PlantasRESUMO
Iron is an indispensable nutrient for life. A lack of it leads to iron deficiency anaemia (IDA), which currently affects about 1.2 billion people worldwide. The primary means of IDA treatment is oral or parenteral iron supplementation. This can be burdened with numerous side effects such as oxidative stress, systemic and local-intestinal inflammation, dysbiosis, carcinogenic processes and gastrointestinal adverse events. Therefore, this review aimed to provide insight into the physiological mechanisms of iron management and investigate the state of knowledge of the relationship between iron supplementation, inflammatory status and changes in gut microbiota milieu in diseases typically complicated with IDA and considered as having an inflammatory background such as in inflammatory bowel disease, colorectal cancer or obesity. Understanding the precise mechanisms critical to iron metabolism and the awareness of serious adverse effects associated with iron supplementation may lead to the provision of better IDA treatment. Well-planned research, specific to each patient category and disease, is needed to find measures and methods to optimise iron treatment and reduce adverse effects.