Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 59(27): 2528-2540, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32538627

RESUMO

Allosteric regulation is important in many biological processes, including cell signaling, gene regulation, and metabolism. Saccharomyces cerevisiae chorismate mutase (ScCM) is a key homodimeric enzyme in the shikimate pathway responsible for the generation of aromatic amino acids, where it is allosterically inhibited and activated by Tyr and Trp, respectively. Our previous studies indicated that binding of both allosteric effectors is negatively cooperative, that is binding at one allosteric binding site discourages binding at the other, due to the entropic penalty of binding the second allosteric effector. We utilized variable temperature isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) experiments to better understand the entropic contributions to allosteric effector binding, including changes to solvent entropy and protein conformational entropy. Upon binding either Tyr or Trp, ScCM experiences a quenching of motions on the picosecond-to-nanosecond time scale, which we could relate to a loss of protein conformational entropy. Further ITC and NMR studies were consistent with the Tyr-bound form of ScCM being associated with more water molecules compared to the Trp-bound form and Tyr binding being associated with a less positive solvent entropy change. These studies provide insight into the role of structural dynamics in ScCM function and highlight the importance of solvent entropy changes in allosteric regulation, a historically underappreciated concept.


Assuntos
Corismato Mutase/química , Corismato Mutase/metabolismo , Entropia , Saccharomyces cerevisiae/enzimologia , Solventes/química , Triptofano/química , Tirosina/química , Regulação Alostérica , Sítio Alostérico , Aminoácidos Aromáticos/metabolismo , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Triptofano/metabolismo , Tirosina/metabolismo
2.
Adv Exp Med Biol ; 1163: 359-384, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707711

RESUMO

Our ability to engineer protein structure and function has grown dramatically over recent years. Perhaps the next level in protein design is to develop proteins whose function can be regulated in response to various stimuli, including ligand binding, pH changes, and light. Endeavors toward these goals have tested and expanded on our understanding of protein function and allosteric regulation. In this chapter, we provide examples from different methods for developing new allosterically regulated proteins. These methods range from whole insertion of regulatory domains into new host proteins, to covalent attachment of photoswitches to generate light-responsive proteins, and to targeted changes to specific amino acid residues, especially to residues identified to be important for relaying allosteric information across the protein framework. Many of the examples we discuss have already found practical use in medical and biotechnology applications.


Assuntos
Engenharia de Proteínas , Proteínas , Regulação Alostérica , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Engenharia de Proteínas/tendências , Proteínas/química
3.
Bioorg Chem ; 75: 217-223, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28987877

RESUMO

The FIKK family of kinases is unique to parasites of the Apicomplexan order, which includes all malaria parasites. Plasmodium falciparum, the most virulent form of human malaria, has a family of 19 FIKK kinases, most of which are exported into the host red blood cell during malaria infection. Here, we confirm that FIKK 8 is a non-exported member of the FIKK kinase family. Through expression and purification of the recombinant kinase domain, we establish that emodin is a relatively high-affinity (IC50=2µM) inhibitor of PfFk8. Closely related anthraquinones do not inhibit PfFk8, suggesting that the particular substitution pattern of emodin is critical to the inhibitory pharmacophore. This first report of a P. falciparum FIKK kinase inhibitor lays the groundwork for developing specific inhibitors of the various members of the FIKK kinase family in order to probe their physiological function.


Assuntos
Emodina/química , Emodina/farmacologia , Plasmodium falciparum/enzimologia , Proteínas Quinases/química , Proteínas Quinases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Sequência de Aminoácidos , Antraquinonas/química , Emodina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Concentração Inibidora 50 , Microscopia de Fluorescência , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
4.
Catalysts ; 12(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37377541

RESUMO

Regulatory processes in biology can be re-conceptualized in terms of logic gates, analogous to those in computer science. Frequently, biological systems need to respond to multiple, sometimes conflicting, inputs to provide the correct output. The language of logic gates can then be used to model complex signal transduction and metabolic processes. Advances in synthetic biology in turn can be used to construct new logic gates, which find a variety of biotechnology applications including in the production of high value chemicals, biosensing and drug delivery. In this review, we focus on advances in the construction of logic gates that take advantage of biological catalysts, including both protein-based and nucleic acid-based enzymes. These catalyst-based biomolecular logic gates can read a variety of molecular inputs and provide chemical, optical and electrical outputs, allowing them to interface with other types of biomolecular logic gates or even extend to inorganic systems. Continued advances in molecular modeling and engineering will facilitate the construction of new logic gates, further expanding the utility of biomolecular computing.

5.
J Mol Biol ; 434(17): 167531, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259366

RESUMO

Proteins fluctuate between different conformations in solution, and these conformational fluctuations can be important for protein function and allosteric regulation. The chorismate mutase from Saccharomyces cerevisiae (ScCM), a key enzyme in the biosynthesis of aromatic amino acids, is allosterically activated and inhibited by tryptophan and tyrosine, respectively. It was initially proposed that in the absence of effector, ScCM fluctuates between activated R and inhibited T conformations according to the Monod-Wyman-Changeux (MWC) model, although a more complex regulation pattern was later suggested by mutagenesis and kinetic data. Here we used NMR relaxation dispersion experiments to understand the conformational fluctuations on the microsecond-to-millisecond timescale that occur in ScCM. In the absence of allosteric effectors, ScCM did not exclusively exchange between T and R conformations, suggesting that the two-state MWC model is insufficient to explain conformational dynamics. Addition of tyrosine led to the quenching of much of the motion on this timescale, while new motions were identified in the presence of tryptophan. These new motions are consistent with conformational fluctuations into an alternative conformation that may be important for enzyme activity.


Assuntos
Corismato Mutase , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regulação Alostérica , Corismato Mutase/química , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Triptofano/metabolismo , Tirosina/metabolismo
6.
Enzymes ; 49: 149-193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696831

RESUMO

All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.


Assuntos
Vírus de RNA , RNA Polimerase Dependente de RNA , Domínio Catalítico , Cristalografia por Raios X , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA/genética
7.
Viruses ; 13(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803479

RESUMO

Viruses have evolved numerous strategies to maximize the use of their limited genetic material, including proteolytic cleavage of polyproteins to yield products with different functions. The poliovirus polyprotein 3CD is involved in important protein-protein, protein-RNA and protein-lipid interactions in viral replication and infection. It is a precursor to the 3C protease and 3D RNA-dependent RNA polymerase, but has different protease specificity, is not an active polymerase, and participates in other interactions differently than its processed products. These functional differences are poorly explained by the known X-ray crystal structures. It has been proposed that functional differences might be due to differences in conformational dynamics between 3C, 3D and 3CD. To address this possibility, we conducted nuclear magnetic resonance spectroscopy experiments, including multiple quantum relaxation dispersion, chemical exchange saturation transfer and methyl spin-spin relaxation, to probe conformational dynamics across multiple timescales. Indeed, these studies identified differences in conformational dynamics in functionally important regions, including enzyme active sites, and RNA and lipid binding sites. Expansion of the conformational ensemble available to 3CD may allow it to perform additional functions not observed in 3C and 3D alone despite having nearly identical lowest-energy structures.


Assuntos
Picornaviridae/química , Poliproteínas/química , Poliproteínas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Sítio Alostérico , Sítios de Ligação , Espectroscopia de Ressonância Magnética/métodos , Picornaviridae/genética , Picornaviridae/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Virais/genética , Replicação Viral
8.
ACS Omega ; 2(10): 6605-6612, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023525

RESUMO

A relatively high-affinity inhibitor of FIKK kinase from the malaria parasite Plasmodium vivax was identified by in vitro assay of recombinant kinase. The FIKK kinase family is unique to parasitic organisms of the Apicomplexan order and has been shown to be critical in malaria parasites. The recombinant kinase domain was expressed and screened against a small molecule library, revealing a number of tyrosine kinase inhibitors that block FIKK kinase activity. A family of tyrphostins was further investigated, to begin exploring the FIKK kinase pharmacophore. Finally, emodin was identified as a relatively high-affinity FIKK kinase inhibitor, identifying this family of anthraquinones as potential lead compounds for the development of antimalarials targeting the FIKK kinase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA