Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 204: 267-276, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29660540

RESUMO

After administration to livestock, a large fraction of antibiotics are excreted unchanged via excreta and can be transferred to agricultural land. For effective risk assessment a critical factor is to determine which antibiotics can be expected in the different environmental compartments. After excretion, the first relevant compartment is manure storage. In the current study, the fate of a broad scope of antibiotics (n = 46) during manure storage of different livestock animals (calves, pigs, broilers) was investigated. Manure samples were fortified with antibiotics and incubated during 24 days. Analysis was carried out by LC-MS. The dissipation of the antibiotics was modelled based on the recommendations of FOCUS working group. Sulphonamides relatively quickly dissipate in all manure types, with a DT90 of in general between 0.2 and 30 days. Tetracyclines (DT90 up to 422 days), quinolones (DT90 100-5800 days), macrolides (DT90 18-1000 days), lincosamides (DT90 135-1400 days) and pleuromutilins (DT90 of 49-1100 days) are in general much more persistent, but rates depend on the manure type. Specifically lincomycin, pirlimycin, tiamulin and most quinolones are very persistent in manure with more than 10% of the native compound remaining after a year in most manure types. For all compounds tested in the sub-set, except the macrolides, the dissipation was an abiotic process. Based on the persistence and current frequency of use, oxytetracycline, doxycycline, flumequine and tilmicosin can be expected to end up in environmental compartments. Ecotoxicological data should be used to further prioritize these compounds.


Assuntos
Antibacterianos/análise , Resíduos de Drogas/análise , Esterco/análise , Animais , Bovinos , Galinhas , Suínos
2.
J Contam Hydrol ; 50(1-2): 53-77, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11475161

RESUMO

Although laboratory experiments show that non-aqueous phase liquid (NAPL) is retained in the unsaturated zone, no existing multiphase flow model has been developed to account for residual NAPL after NAPL drainage in the unsaturated zone. We developed a static constitutive set of saturation-capillary pressure relationships for water, NAPL and air that accounts for both this residual NAPL and entrapped NAPL. The set of constitutive relationships is formulated similarly to the set of scaled relationships that is frequently applied in continuum models. The new set consists of three fluid-phase systems: a three-phase system and a two-phase system, that both comply with the original constitutive model, and a newly introduced residual NAPL system. The new system can be added relatively easily to the original two- and three-phase systems. Entrapment is included in the model. The constitutive relationships of the non-drainable residual NAPL system are based on qualitative fluid behavior derived from a pore scale model. The pore scale model reveals that the amount of residual NAPL depends on the spreading coefficient and the water saturation. Furthermore, residual NAPL is history-dependent. At the continuum scale, a critical NAPL pressure head defines the transition from free, mobile NAPL to residual NAPL. Although the Pc-S relationships for water and total liquid are not independent in case of residual NAPL, two two-phase Pc-S relations can represent a three-phase residual system of Pc-S relations. A newly introduced parameter, referred to as the residual oil pressure head, reflects the mutual dependency of water and oil. Example calculations show consistent behavior of the constitutive model. Entrapment and retention in the unsaturated zone cooperate to retain NAPL. Moreover, the results of our constitutive model are in agreement with experimental observations.


Assuntos
Modelos Teóricos , Solo , Movimentos da Água , Pressão , Poluentes do Solo , Poluentes da Água
3.
J Contam Hydrol ; 71(1-4): 47-66, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15145561

RESUMO

Enhanced understanding of light non-aqueous phase liquid (LNAPL) infiltration into heterogeneous porous media is important for the effective design of remediation strategies. We used a 2-D experimental facility that allows for visual observation of LNAPL contours in order to study LNAPL redistribution in a layered porous medium. The layers are situated in the unsaturated zone near the watertable and they are inclined to be able to observe the effect of discontinuities in capillary forces and relative permeabilities. Two experiments were performed. The first experiment consisted of LNAPL infiltration into a fine sand matrix with a coarse sand layer, and the second experiment consisted of a coarse sand matrix and a fine sand layer. The numerical multi-phase flow model STOMP was validated with regard to the experimental results. This model is able to adequately reproduce the experimental LNAPL contours. Numerical sensitivity analysis was also performed. The capillarity contrast between sands was found to be the main controlling factor determining the final LNAPL distribution.


Assuntos
Modelos Teóricos , Poluentes do Solo/análise , Poluentes da Água/análise , Poluição Ambiental/prevenção & controle , Filtração , Teste de Materiais , Porosidade , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA