Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 21(4): 1636-1643, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32191450

RESUMO

Smart nanocarriers for the transport of drugs to tumor cells are nowadays of great interest for treating cancer. The use of enzymatic stimuli to cleave peptide-based drug nanocapsules for the selective release of nanocapsule cargo in close proximity to tumor cells opens new possibilities in cancer research. In the present work, we demonstrate a methodology for finding and optimizing cleavable substrate sequences by the type II transmembrane serine protease hepsin, which is highly overexpressed in prostate cancer. The design and screening of combinatorial libraries in silico against the binding cavity of hepsin allow the identification of a panel of promising substrates with high-calculated docking scores. In vitro screening verifies the predictions and showed that all substrates are cleaved by hepsin with higher efficiency than the literature known hepsin substrate RQLR↓VVGG. The introduction of d-amino acids on a selected peptide with the highest catalytic efficiency (kcat/Km) renders it resistant to cleavage by plasma or serum while maintaining their susceptibility to hepsin.


Assuntos
Neoplasias da Próstata , Serina Proteases , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Masculino , Peptídeos , Neoplasias da Próstata/tratamento farmacológico
2.
Klin Monbl Augenheilkd ; 237(9): 1087-1092, 2020 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-32434228

RESUMO

The incidence of microbial keratitis has been increasing and is now 28 cases/100,000 inhabitants; this may be due to the more frequent use of contact lenses. Keratitis can lead to visual impairment and in severe cases with endophthalmitis to enucleation of the affected eye. As microorganisms are becoming more resistant to antibiotic therapy, there is a need for new therapeutic strategies. Cold atmospheric pressure plasma has already been successfully used to disinfect surfaces. This study investigates the efficacy of cold atmospheric pressure plasma against Escherichia coli in a depth-resolved corneal stroma tissue model.


Assuntos
Infecções Oculares Bacterianas , Ceratite/terapia , Gases em Plasma/uso terapêutico , Pressão Atmosférica , Substância Própria , Humanos
3.
Immunogenetics ; 69(6): 401-407, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28364129

RESUMO

The Scavenger Receptor Cysteine-Rich (SRCR) proteins are an archaic group of proteins characterized by the presence of multiple SRCR domains. They are membrane-bound or secreted proteins, which are generally related to host defense systems in animals. Deleted in Malignant Brain Tumors 1 (DMBT1) is a SRCR protein which is secreted in mucosal fluids and involved in host defense by pathogen binding by its SRCR domains. Genetic polymorphism within DMBT1 leads to DMBT1-alleles giving rise to polypeptides with interindividually different numbers of SRCR domains, ranging from 8 SRCR domains (encoded by 6 kb DMBT1 variant) to 13 SRCR domains (encoded by the 8 kb DMBT1 variant). In the present study, we have investigated whether reduction from 13 to 8 amino-terminal SRCR domains leads to reduction of bacterial binding. The 6 kb variant bound ~20-45% less bacteria compared to the 8 kb variant. These results support the hypothesis that genetic variation in DMBT1 may influence microbial defense.


Assuntos
Mutação em Linhagem Germinativa , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Deleção de Sequência , Aderência Bacteriana/genética , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Humanos , Polimorfismo Genético , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/química , Receptores Depuradores/química , Proteínas Supressoras de Tumor
4.
Biomater Sci ; 11(18): 6287-6298, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551433

RESUMO

An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome in vivo are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, e.g. liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations. The surface chemistry of nanoparticles is known to be the most important determinant for the biological fate of nanoparticles, as it influences the extent of serum protein adsorption, and also the relative composition of the protein corona. Here we preliminarily evaluate an extremely simple screening method for nanoparticle surface chemistry pre-optimization based on nanoparticle uptake in vitro by PC-3 cancer cells and THP-1 macrophages. Only when both selectivity for the cancer cells as well as the extent of nanoparticle uptake are taken into consideration do the in vitro results mirror literature results obtained for small animal models. Furthermore, although not investigated here, the screening method does also lend itself to the study of actively targeted nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Animais , Neoplasias/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos , Proteínas Sanguíneas/química , Fígado/metabolismo , Coroa de Proteína/química
5.
J Biophotonics ; 16(5): e202200327, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36633379

RESUMO

A rapid, precise, and viability-retaining method for cytoplasmic molecule delivery is highly desired for cell engineering. Routine methods suffer from low throughput, lack of selectivity, requirement of helper compounds, predominant endosomal delivery, and/or are restricted to specific molecule classes. Photonic cell manipulation bears the potential to overcome these drawbacks. Here we investigated mammalian cell manipulation by single sub-nanosecond laser pulses. Axial beam waist positioning close to a cell monolayer induced culture vessel damage and zones of cell ablation. Cells at margins of ablation zones exhibited uptake of membrane-impermeant fluorophores and GFP expression plasmids. Increasing Rayleigh-length and beam waist diameter reduced the sensitivity to axial defocusing and resulted in robust molecule transfer. Serial application of single pulses focused over a moving cell monolayer yielded quantitative molecule transfer to cells at rates up to 40%. Our results could be basic to spatially and temporally controlled single laser pulse-mediated marker-free high throughput cell manipulation.


Assuntos
Lasers , Luz , Animais , Corantes Fluorescentes , Endossomos , Fótons , Mamíferos
6.
Sci Signal ; 15(726): eabm4452, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316097

RESUMO

Mutations that activate members of the RAS family of GTPases are associated with various cancers and drive tumor growth. The glucocorticoid receptor (GR), a member of the nuclear receptor family, has been proposed to interact with and inhibit the activation of components of the PI3K-AKT and MAPK pathways downstream of RAS. In the absence of activating ligands, we found that GR was present in cytoplasmic KRAS-containing complexes and inhibited the activation of wild-type and oncogenic KRAS in mouse embryonic fibroblasts and human lung cancer A549 cells. The DNA binding domain of GR was involved in the interaction with KRAS, but GR-dependent inhibition of RAS activation did not depend on the nuclear translocation of GR. The addition of ligand released GR-dependent inhibition of RAS, AKT, the MAPK p38, and the MAPKK MEK. CRISPR-Cas9-mediated deletion of GR in A549 cells enhanced tumor growth in xenografts in mice. Patient samples of non-small cell lung carcinomas showed lower expression of NR3C1, the gene encoding GR, compared to adjacent normal tissues and lower NR3C1 expression correlated with a worse disease outcome. These results suggest that glucocorticoids prevent the ability of GR to limit tumor growth by inhibiting RAS activation, which has potential implications for the use of glucocorticoids in patients with cancer.


Assuntos
Neoplasias Pulmonares , Receptores de Glucocorticoides , Animais , Proliferação de Células , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
7.
Int J Mol Sci ; 11(3): 956-966, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20479994

RESUMO

A test system for cell viability based on colony formation has been established and applied to high resolution fluorescence microscopy and single molecule detection. Living cells were irradiated either by epi-illumination or by total internal reflection (TIR) of a laser beam, and light doses where at least 90% of irradiated cells survived were determined. These light doses were in the range of a few J/cm(2) up to about 200 J/cm(2) depending on the wavelength of illumination as well as on the presence or absence of a fluorescent dye (e.g., the membrane marker laurdan). In general, cells were less sensitive to TIR than to epi-illumination. However, comparably high light doses needed for repetitive excitation of single molecules limit the application of super-resolution microscopy to living cells.


Assuntos
Microscopia de Fluorescência/métodos , Doses de Radiação , Raios Ultravioleta/efeitos adversos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Humanos
8.
J Photochem Photobiol B ; 210: 111963, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32795847

RESUMO

BACKGROUND: Photodynamic therapy with 5-aminolevulinic acid (5-ALA PDT) is a promising novel therapeutic approach in the therapy of malignant brain tumors. 5-ALA occurs as a natural precursor of protoporphyrin IX (PpIX), a tumor-selective photosensitizer. The ATP-binding cassette transporter ABCG2 plays a physiologically significant role in porphyrin efflux from living cells. ABCG2 is also associated with stemness properties. Here we investigate the role of ABCG2 on the susceptibility of glioblastoma cells to 5-ALA PDT. METHODS: Accumulation of PpIX in doxycycline-inducible U251MG glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251MG cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. U251MG cells with high expression of ABCG2 were enriched and used for further experiments (sU251MG-V). PDT was performed on monolayer cell cultures by irradiation with laser light at 635 nm. RESULTS: Elevated levels of ABCG2 in doxycycline induced sU251MG-V cells led to a diminished accumulation of PpIX and higher light doses were needed to reduce cell viability. By inhibiting the ABCG2 transporter with the efficient and non-toxic ABCG2 inhibitor KO143, PpIX accumulation and PDT efficiency could be strongly enhanced. CONCLUSION: Glioblastoma cells with high ABCG2 expression accumulate less photosensitizer and require higher light doses to be eliminated. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Ácido Aminolevulínico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Luz , Proteínas de Neoplasias/genética , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/química , Protoporfirinas/metabolismo , Protoporfirinas/uso terapêutico
9.
Cell Death Dis ; 11(2): 120, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051394

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
RSC Adv ; 9(31): 17745-17753, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35520598

RESUMO

Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100-900 nm) and hence thicknesses were grown onto trichloro(octadecyl)silane-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the drug model 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. The vast majority of the DiO-loaded particles remained attached to the substrate also after 24 h of incubation, making the films attractive as longer-term reservoirs for drugs on e.g. medical implants.

11.
Cell Death Dis ; 10(8): 601, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399560

RESUMO

The serine protease hepsin is frequently overexpressed in human prostate cancer (PCa) and is associated with matrix degradation and PCa progression in mice. Curiously, low expression of hepsin is associated with poor survival in different cancer types, and transgenic overexpression of hepsin leads to loss of viability in various cancer cell lines. Here, by comparing isogenic transfectants of the PCa cell line PC-3 providing inducible overexpression of wild-type hepsin (HPN) vs. the protease-deficient mutant HPNS353A, we were able to attribute hepsin-mediated tumor-adverse effects to its excess proteolytic activity. A stem-like expression signature of surface markers and adhesion molecules, Notch intracellular domain release, and increased pericellular protease activity were associated with low expression levels of wild-type hepsin, but were partially lost in response to overexpression. Instead, overexpression of wild-type hepsin, but not of HPNS353A, induced relocalization of the protein to the cytoplasm, and increased autophagic flux in vitro as well as LC3B punctae frequency in tumor xenografts. Confocal microscopy revealed colocalization of wild-type hepsin with both LC3B punctae as well as with the autophagy cargo receptor p62/SQSTM1. Overexpression of wild type, but not protease-deficient hepsin induced expression and nuclear presence of CHOP, indicating activation of the unfolded protein response and ER-associated protein degradation (ERAD). Whereas inhibitors of ER stress and secretory protein trafficking slightly increased viability, combined inhibition of the ubiquitin-proteasome degradation pathway (by bortezomib) with either ER stress (by salubrinal) or autophagy (by bafilomycin A1) revealed a significant decrease of viability during overexpression of wild-type hepsin in PC-3 cells. Our results demonstrate that a precise control of Hepsin proteolytic activity is critical for PCa cell fate and suggest, that the interference with ERAD could be a promising therapeutic option, leading to induction of proteotoxicity in hepsin-overexpressing tumors.


Assuntos
Carcinogênese/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias da Próstata/genética , Serina Endopeptidases/genética , Animais , Autofagia/genética , Cinamatos/farmacologia , Degradação Associada com o Retículo Endoplasmático/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células PC-3 , Neoplasias da Próstata/patologia , Proteína Sequestossoma-1/genética , Tioureia/análogos & derivados , Tioureia/farmacologia
12.
Gastroenterology ; 133(5): 1499-509, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17983803

RESUMO

BACKGROUND & AIMS: Impaired mucosal defense plays an important role in the pathogenesis of Crohn's disease (CD), one of the main subtypes of inflammatory bowel disease (IBD). Deleted in malignant brain tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein with predominant expression in the intestine and has been proposed to exert possible functions in regenerative processes and pathogen defense. Here, we aimed at analyzing the role of DMBT1 in IBD. METHODS: We studied DMBT1 expression in IBD and normal tissues by quantitative reverse transcription-polymerase chain reaction, immunohistochemistry, and mRNA in situ hybridization. Genetic polymorphisms within DMBT1 were analyzed in an Italian IBD case-control sample. Dmbt1(-/-) mice were generated, characterized, and analyzed for their susceptibility to dextran sulfate sodium-induced colitis. RESULTS: DMBT1 levels correlate with disease activity in inflamed IBD tissues. A highly significant fraction of the patients with IBD displayed up-regulation of DMBT1 specifically in the intestinal epithelial surface cells and Paneth cells. A deletion allele of DMBT1 with a reduced number of scavenger receptor cysteine-rich domain coding exons is associated with an increased risk of CD (P = .00056; odds ratio, 1.75) but not for ulcerative colitis. Dmbt1(-/-) mice display enhanced susceptibility to dextran sulfate sodium-induced colitis and elevated Tnf, Il6, and Nod2 expression levels during inflammation. CONCLUSIONS: DMBT1 may play a role in intestinal mucosal protection and prevention of inflammation. Impaired DMBT1 function may contribute to the pathogenesis of CD.


Assuntos
Doença de Crohn/genética , Doença de Crohn/fisiopatologia , Deleção de Genes , Mucosa Intestinal/fisiopatologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , Criança , Doença de Crohn/induzido quimicamente , Proteínas de Ligação a DNA , Sulfato de Dextrana , Suscetibilidade a Doenças , Éxons/genética , Feminino , Humanos , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mucinas/genética , Mucinas/fisiologia , Proteína Adaptadora de Sinalização NOD2/metabolismo , RNA Mensageiro/metabolismo , Fatores de Risco , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor , Regulação para Cima/genética
13.
BMC Cancer ; 8: 122, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18447912

RESUMO

BACKGROUND: Among the most prominent metabolic alterations in cancer cells are the increase in glucose consumption and the conversion of glucose to lactic acid via the reduction of pyruvate even in the presence of oxygen. This phenomenon, known as aerobic glycolysis or the Warburg effect, may provide a rationale for therapeutic strategies that inhibit tumour growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat enriched with omega-3 fatty acids and medium-chain triglycerides (MCT). METHODS: Twenty-four female NMRI nude mice were injected subcutaneously with tumour cells of the gastric adenocarcinoma cell line 23132/87. The animals were then randomly split into two feeding groups and fed either a ketogenic diet (KD group; n = 12) or a standard diet (SD group; n = 12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The two diets were compared based on tumour growth and survival time (interval between tumour cell injection and attainment of target tumour volume). RESULTS: The ketogenic diet was well accepted by the KD mice. The tumour growth in the KD group was significantly delayed compared to that in the SD group. Tumours in the KD group reached the target tumour volume at 34.2 +/- 8.5 days versus only 23.3 +/- 3.9 days in the SD group. After day 20, tumours in the KD group grew faster although the differences in mean tumour growth continued significantly. Importantly, they revealed significantly larger necrotic areas than tumours of the SD group and the areas with vital tumour cells appear to have had fewer vessels than tumours of the SD group. Viable tumour cells in the border zone surrounding the necrotic areas of tumours of both groups exhibited a glycolytic phenotype with expression of glucose transporter-1 and transketolase-like 1 enzyme. CONCLUSION: Application of an unrestricted ketogenic diet enriched with omega-3 fatty acids and MCT delayed tumour growth in a mouse xenograft model. Further studies are needed to address the impact of this diet on other tumour-relevant functions such as invasive growth and metastasis.


Assuntos
Adenocarcinoma/dietoterapia , Dieta com Restrição de Carboidratos , Ácidos Graxos Ômega-3/administração & dosagem , Neoplasias Gástricas/dietoterapia , Triglicerídeos/administração & dosagem , Ácido 3-Hidroxibutírico , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/patologia , Animais , Biomarcadores Tumorais/biossíntese , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica/dietoterapia , Neoplasias Gástricas/irrigação sanguínea , Neoplasias Gástricas/patologia , Carga Tumoral/efeitos dos fármacos
14.
Am J Clin Pathol ; 130(1): 50-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18550470

RESUMO

Transketolases link the Embden-Meyerhof pathway to the pentose phosphate pathway. An influence of p-Akt on this metabolism was described. This study was performed to compare the expression of transketolase-like 1 (TKTL1) and p-Akt in glioblastoma multiforme (GBM) and other astrocytic gliomas (AGs, grades II and III). We analyzed 15 GBMs, 15 AGs (grade II), and 3 normal brain samples for TKTL1 expression by semiquantitative reverse transcription-polymerase chain reaction and Western blotting and 23 GBMs, 9 grade III AGs, and 7 grade II AGs immunohistochemically (TKTL1 and p-Akt). On the protein level, TKTL1 was significantly overexpressed in tumors. Immunohistochemically, the tumor grade significantly correlated with expression of TKTL1. Compared with grades II and III AGs, GBMs showed higher expression of TKTL1, more positive tumors, and a higher percentage of positive tumor cells. The percentage of positive cells for TKTL1 and p-Akt was significantly correlated. These observations could lead to additional therapeutic options targeting a specific blockade of TKTL1 enzyme activity.


Assuntos
Astrocitoma/enzimologia , Glioblastoma/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transcetolase/biossíntese , Astrocitoma/patologia , Ativação Enzimática , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , RNA Mensageiro/metabolismo , Regulação para Cima
15.
J Photochem Photobiol B ; 178: 182-191, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156346

RESUMO

BACKGROUND: Photodynamic therapy (PDT) of malignant brain tumors is a promising adjunct to standard treatment, especially if tumor stem cells thought to be responsible for tumor progression and therapy resistance were also susceptible to this kind of treatment. However, some photosensitizers have been reported to be substrates of ABCG2, one of the membrane transporters mediating resistance to chemotherapy. Here we investigate, whether inhibition of ABCG2 can restore sensitivity to photosensitizer chlorin e6-mediated PDT. METHODS: Accumulation of chlorin e6 in wild type U87 and doxycycline-inducible U251 glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251 cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. Tumor sphere cultivation under low attachment conditions was used to enrich for cells with stem cell-like properties. PDT was done on monolayer cell cultures by irradiation with laser light at 665nm. RESULTS: Elevated levels of ABCG2 in U87 cells grown as tumor spheres or in U251 cells after ABCG2 induction led to a 6-fold lower accumulation of chlorin e6 and the light dose needed to reduce cell viability by 50% (LD50) was 2.5 to 4-fold higher. Both accumulation and PDT response can be restored by KO143, an efficient non-toxic inhibitor of ABCG2. CONCLUSION: Glioblastoma stem cells might escape phototoxic destruction by ABCG2-mediated reduction of photosensitizer accumulation. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Dicetopiperazinas/toxicidade , Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/toxicidade , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Clorofilídeos , Doxiciclina/farmacologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Luz , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/toxicidade , Porfirinas/química , Porfirinas/toxicidade , Sorafenibe
16.
Photodiagnosis Photodyn Ther ; 22: 106-114, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29567384

RESUMO

BACKGROUND: Organic crystalline nanoparticles (NPs) are not fluorescent due to the crystalline structure of the flat molecules organized in layers. In earlier experiments with Aluminum Phthalocyanine (AlPc)-derived NPs, the preferential uptake and dissolution by macrophages was demonstrated [3]. Therefore, inflamed tissue or cancer tissue with accumulated macrophages may exhibit specific fluorescence in contrast to healthy tissue which does not fluoresce. The present study addresses the photobiological effects of NP generated from Temoporfin (mTHPC), a clinically utilized photosensitizer belonging to the chlorin family. METHODS: In-vitro investigations addressing uptake, dissolution and phototoxicity of mTHPC NP vs. the liposomal mTHPC formulation Foslip were performed using J774A.1 macrophages and L929 fibroblasts. For total NP uptake analysis, the cells were lysed, the nanoparticles dissolved and the fluorescence quantified. The intracellular molecular dissolution was measured by flow cytometry. Fluorescence microscopy served for controlling intracellular localization of the dissolved fluorescing molecules. Reaction mechanisms after PDT (mitochondrial activity, apoptosis) were analyzed using fluorescent markers in cell-based assays and flow cytometry. RESULTS: Organic crystalline NP of different size were produced from mTHPC raw material. NP were internalized more efficiently in J774A.1 macrophages when compared to L929 fibroblasts, whereas uptake and fluorescence of Foslip was similar between the cell lines. NP dissolution correlated with internalization levels for larger particles in the range of 200-500 nm. Smaller particles (45 nm in diameter) were taken up at high levels in macrophages, but were not dissolved efficiently, resulting in comparatively low intracellular fluorescence. Whereas Foslip was predominantly localized in membranes, NP-mediated fluorescence also co-localized with acidic vesicles, suggesting endocytosis/phagocytosis as a major uptake mechanism. In macrophages, phototoxicity of NPs was stronger than in fibroblasts, even exceeding Foslip when administered in identical amounts. In both cell lines, phototoxicity correlated with mitochondrial depolarization and enhanced activation of caspase 3. CONCLUSIONS: Due to their preferential uptake/dissolution in macrophages, mTHPC NP may have potential for the diagnosis and photodynamic treatment of macrophage-associated disorders such as inflammation and cancer.


Assuntos
Macrófagos/citologia , Mesoporfirinas/farmacologia , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Apoptose , Fibroblastos/citologia , Citometria de Fluxo , Lipossomos/química , Microscopia de Fluorescência
17.
J Photochem Photobiol B ; 185: 215-222, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29966988

RESUMO

The monocyte/macrophage cell lineage reveals an enormous plasticity, which is required for tissue homeostasis, but is also undermined in various disease states, leading to a functional involvement of macrophages in major human diseases such as atherosclerosis and cancer. We recently generated in vivo evidence that crystalline, nonfluorescent nanoparticles of the hydrophobic porphyrin-related photosensitizer Aluminum phthalocyanine are selectively dissolved and thus may be used for specific fluorescent labelling of rejected, but not of accepted xenotransplants. This led us to hypothesize that nanoparticles made of planar photosensitizers such as porphyrins and chlorins were preferentially taken up and dissolved by macrophages, which was verified by in vitro studies. Here, using an in vitro system for macrophage differentiation/polarization of the human monocyte THP-1 cell line, we demonstrate differential uptake/dissolution of Temoporfin-derived nanoparticles in polarized macrophages, which resulted in differential photosensitivity. More importantly, low dose photodynamic sensitization using Temoporfin nanoparticles can be used to trigger M1 re-polarization of THP-1 cells previously polarized to the M2 state. Thus, sublethal photodynamic treatment using Temoporfin nanoparticles might be applied to induce a phenotypic shift of tumor-associated macrophages for the correction of an immunosuppressive microenvironment in the treatment of cancer, which may synergize with immune checkpoint inhibition.


Assuntos
Polaridade Celular/efeitos dos fármacos , Luz , Mesoporfirinas/química , Nanopartículas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular , Polaridade Celular/efeitos da radiação , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nanopartículas/química , Fenótipo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
18.
Nanoscale ; 9(34): 12379-12390, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28585970

RESUMO

The incorporation of nanoparticles as drug vectors into 3D scaffolds has attracted a lot of recent interest. In particular, tissue engineering applications would benefit from a spatially and temporally regulated release of biological cues, which act on precursor/stem cells in a three-dimensional growth environment. Injectable cell- and nanoparticle-containing scaffolds are especially interesting in this respect, but require matrix self-assembly and coordinated interactions between cells, matrices, and nanoparticles, which are largely uncharacterized yet. In this proof of concept study we combined the matrix-forming self-assembling peptide RADA16-I, different mesoporous silica nanoparticles (MSN) as potential drug carriers, and MC3T3-E1 osteoblast precursor cells. When injected to physiological media, the mixtures rapidly formed hybrid peptide-silica hydrogels containing RADA16-I nanofiber scaffolds with uniform spatial distribution of viable cells and MSN. MSN surface chemistry was critical for interactions within the hydrogel and for RADA16-I adsorption, thereby dominantly influencing cellular uptake and cell viability, whereas the impact of serum protein was minor. Thus, important parameters which allow tuning of nanoparticulate drug vector interactions with cells in injectable 3D scaffolds are identified, which are of importance for the future design of smart scaffolds for advanced tissue engineering in vivo.


Assuntos
Hidrogéis , Nanopartículas , Peptídeos/química , Dióxido de Silício , Alicerces Teciduais , Células 3T3 , Animais , Sobrevivência Celular , Camundongos , Engenharia Tecidual
19.
Cell Death Differ ; 24(4): 672-682, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28106886

RESUMO

During osteoporosis bone formation by osteoblasts is reduced and/or bone resorption by osteoclasts is enhanced. Currently, only a few factors have been identified in the regulation of bone integrity by osteoblast-derived osteocytes. In this study, we show that specific disruption of menin, encoded by multiple endocrine neoplasia type 1 (Men1), in osteoblasts and osteocytes caused osteoporosis despite the preservation of osteoblast differentiation and the bone formation rate. Instead, an increase in osteoclast numbers and bone resorption was detected that persisted even when the deletion of Men1 was restricted to osteocytes. We demonstrate that isolated Men1-deficient osteocytes expressed numerous soluble mediators, such as C-X-C motif chemokine 10 (CXCL10), and that CXCL10-mediated osteoclastogenesis was reduced by CXCL10-neutralizing antibodies. Collectively, our data reveal a novel role for Men1 in osteocyte-osteoclast crosstalk by controlling osteoclastogenesis through the action of soluble factors. A role for Men1 in maintaining bone integrity and thereby preventing osteoporosis is proposed.


Assuntos
Comunicação Celular/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Feminino , Fêmur/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteócitos/citologia , Osteócitos/metabolismo , Osteogênese , Osteoporose/etiologia , Osteoporose/metabolismo , Osteoporose/patologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo
20.
Oncotarget ; 8(14): 23760-23774, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28423600

RESUMO

Next-generation sequencing has dramatically increased genome-wide profiling options and conceptually initiates the possibility for personalized cancer therapy. State-of-the-art sequencing studies yield large candidate gene sets comprising dozens or hundreds of mutated genes. However, few technologies are available for the systematic downstream evaluation of these results to identify novel starting points of future cancer therapies.We improved and extended a site-specific recombination-based system for systematic analysis of the individual functions of a large number of candidate genes. This was facilitated by a novel system for the construction of isogenic constitutive and inducible gain- and loss-of-function cell lines. Additionally, we demonstrate the construction of isogenic cell lines with combinations of the traits for advanced functional in vitro analyses. In a proof-of-concept experiment, a library of 108 isogenic melanoma cell lines was constructed and 8 genes were identified that significantly reduced viability in a discovery screen and in an independent validation screen. Here, we demonstrate the broad applicability of this recombination-based method and we proved its potential to identify new drug targets via the identification of the tumor suppressor DUSP6 as potential synthetic lethal target in melanoma cell lines with BRAF V600E mutations and high DUSP6 expression.


Assuntos
Fosfatase 6 de Especificidade Dupla/genética , Melanoma/genética , Linhagem Celular Tumoral , Fosfatase 6 de Especificidade Dupla/biossíntese , Fosfatase 6 de Especificidade Dupla/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Programas de Rastreamento , Melanoma/metabolismo , Melanoma/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Recombinação Genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA