Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 28(32): e202104191, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202499

RESUMO

Two-photon polymerization (2PP) represents a powerful technique for the fabrication of precise three-dimensional structures on a micro- and nanometer scale for various applications. While many review articles are focusing on the used polymeric materials and their application in 2PP, in this review the class of two-photon photo initiators (2PI) used for radical polymerization is discussed in detail. Because the demand for highly efficient 2PI has increased in the last decades, different approaches in designing new efficient 2PIs occurred. This review summarizes the 2PIs known in literature and discusses their absorption behavior under one- and two-photon absorption (2PA) conditions, their two-photon cross sections (σTPA ) as well as their efficiency under 2PP conditions. Here, the photo initiators are grouped depending on their chromophore system (D-π-A-π-D, D-π-D, etc.). Their polymerization efficiencies are evaluated by fabrication windows (FW) depending on different laser intensities and writing speeds.

2.
Molecules ; 25(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142860

RESUMO

The main task of tissue engineering (TE) is to reproduce, replicate, and mimic all kinds of tissues in the human body. Nowadays, it has been proven useful in TE to mimic the natural extracellular matrix (ECM) by an artificial ECM (scaffold) based on synthetic or natural biomaterials to regenerate the physiological tissue/organ architecture and function. Hydrogels have gained interest in the TE community because of their ability to absorb water similar to physiological tissues, thus mechanically simulating the ECM. In this work, we present a novel hydrogel platform based on poly(2-ethyl-2-oxazoline)s, which can be processed to 3D microstructures via two-photon polymerization (2PP) with tunable mechanical properties using monomers and crosslinker with different degrees of polymerization (DP) for future applications in TE. The ideal parameters (laser power and writing speed) for optimal polymerization via 2PP were obtained using a specially developed evaluation method in which the obtained structures were binarized and compared to the computer-aided design (CAD) model. This evaluation was performed for each composition. We found that it was possible to tune the mechanical properties not only by application of different laser parameters but also by mixing poly(2-ethyl-2-oxazoline)s with different chain lengths and variation of the crosslink density. In addition, the swelling behavior of different fabricated hydrogels were investigated. To gain more insight into the viscoelastic behavior of different fabricated materials, stress relaxation tests via nanoindentation experiments were performed. These new hydrogels can be processed to 3D microstructures with high structural integrity using optimal laser parameter settings, opening a wide range of application properties in TE for this material platform.


Assuntos
Materiais Biomiméticos/química , Matriz Extracelular/química , Hidrogéis/química , Poliaminas/química , Alicerces Teciduais/química , Humanos , Fenômenos Mecânicos , Processos Fotoquímicos , Fótons , Polietilenoglicóis/química , Polimerização , Relação Estrutura-Atividade , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA