Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Gastroenterology ; 147(5): 1064-72.e5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25088490

RESUMO

BACKGROUND & AIMS: Lynch syndrome, a nonpolyposis form of hereditary colorectal cancer, is caused by inherited defects in DNA mismatch repair (MMR) genes. Most patients carry a germline mutation in 1 allele of the MMR genes MSH2 or MLH1. With spontaneous loss of the wild-type allele, cells with defects in MMR exist among MMR-proficient cells, as observed in healthy intestinal tissues from patients with Lynch syndrome. We aimed to create a mouse model of this situation to aid in identification of environmental factors that affect MMR-defective cells and their propensity for oncogenic transformation. METHODS: We created mice in which the MMR gene Msh2 can be inactivated in a defined fraction of crypt base columnar stem cells to generate MSH2-deficient intestinal crypts among an excess of wild-type crypts (Lgr5-CreERT2;Msh2(flox/-) mice). Intestinal tissues were collected; immunohistochemical analyses were performed for MSH2, along with allele-specific PCR assays. We traced the fate of MSH2-deficient crypts under the influence of different external factors. RESULTS: Lgr5-CreERT2;Msh2(flox/-) mice developed more adenomas and adenocarcinomas than control mice; all tumors were MSH2 deficient. Exposure of Lgr5-CreERT2;Msh2(flox/-) mice to the methylating agent temozolomide caused MSH2-deficient intestinal stem cells to proliferate more rapidly than wild-type stem cells. The MSH2-deficient intestinal stem cells were able to colonize the intestinal epithelium and many underwent oncogenic transformation, forming intestinal neoplasias. CONCLUSIONS: We developed a mouse model of Lynch syndrome (Lgr5-CreERT2;Msh2(flox/-) mice) and found that environmental factors can modify the number and mutability of the MMR-deficient stem cells. These findings provide evidence that environmental factors can promote development of neoplasias and tumors in patients with Lynch syndrome.


Assuntos
Adenocarcinoma/induzido quimicamente , Adenocarcinoma/genética , Adenoma/induzido quimicamente , Adenoma/genética , Neoplasias Colorretais Hereditárias sem Polipose/induzido quimicamente , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Dacarbazina/análogos & derivados , Intestinos/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/metabolismo , Adenoma/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Dacarbazina/toxicidade , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/metabolismo , Intestinos/patologia , Masculino , Camundongos Knockout , Proteína 2 Homóloga a MutS/deficiência , Proteína 2 Homóloga a MutS/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Risco , Temozolomida , Fatores de Tempo
2.
Exp Dermatol ; 17(8): 675-80, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18328085

RESUMO

Previous studies have described a close anatomical association between hair follicles and subcutaneous adipocytes, yet little is known about the developmental origin of this preadipocyte population. Many transcription factors controlling adipogenesis in cell culture have been described; however, the molecular events governing the process of adipogenesis in rodent skin in vivo are largely unknown. In this study, we investigated the onset and progression of adipocyte differentiation in the skin of foetal and newborn rats and mice. We first analysed the temporo-spatial expression pattern of the transcription factor C/EBPalpha, a key player in adipocyte differentiation. Oil red O staining was then used to identify the presence of lipid within mature adipocytes in the same skin samples. In both species, nuclear staining of C/EBPalpha was first seen in cells around and below the bases of fully formed hair follicles in foetal dermis between 2 and 3 days before birth. Over time, increasing numbers of cells became labelled with C/EBPalpha, predominantly located between, rather than below, the hair follicles. Oil red O staining followed exactly the same pattern seen with the C/EBPalpha antibody, but with a delay of 12-24 h, and histomorphometry showed that the C/EBPalpha labelled cells matured into lipid filled adipocytes. These data show that C/EBPalpha is a useful developmental marker of preadipocytes in vivo. The close developmental association and physical proximity between the lower follicle and surrounding preadipocytes leads us to postulate that follicles control local adipogenic events, via signalling or by contributing to the preadipocyte pool.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Pele/citologia , Pele/metabolismo , Adipogenia , Animais , Animais Recém-Nascidos , Compostos Azo , Diferenciação Celular , Corantes , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feto/citologia , Feto/metabolismo , Folículo Piloso/embriologia , Imuno-Histoquímica , Camundongos , Ratos , Pele/embriologia
3.
Cancer Res ; 74(18): 5266-76, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25056122

RESUMO

The retinoblastoma protein pRB and its two homologs p130 and p107 form the family of pocket proteins and play a major role in cell-cycle regulation and suppression of human and mouse tumorigenesis. Pocket proteins regulate the activity of E2F transcription factors during G1-S transition. Two mechanisms have been described: (i) pocket protein binding blocks the transactivation domain of activator E2Fs, inhibiting E2F-dependent transcription and (ii) E2F-bound pocket proteins can recruit chromatin remodeling proteins containing an LxCxE motif (x encoding any amino acid), resulting in active repression of E2F target genes. To investigate the importance of pRB's LxCxE-interacting motif in cell-cycle control and tumor suppression, we generated mouse embryonic fibroblasts and mice expressing a mutant pRB protein carrying an asparagine for phenylalanine substitution at position 750, abrogating LxCxE binding. Because p130 may compensate for loss of pRB, we studied pRB(N750F) activity in the presence and absence of p130. The pRB-LxCxE interaction was not required for cell-cycle arrest upon mitogen deprivation and cell-cell contact, but did contribute to RAS(V12)- and radiation-induced cell-cycle arrest. Remarkably, the pRB-LxCxE interaction was not required for suppression of in vitro and in vivo transformation, even in the absence of p130. These results indicate that pRB's tumor suppressor activity is not effectuated by active silencing of E2F target genes, but rather by regulation of activator E2Fs or another unidentified mechanism. Furthermore, the in vitro response of pocket protein-perturbed cells to mitogen deprivation and cell-cell contact seems a better predictor of tumor development than the response to ectopic RAS(V12) expression. Cancer Res; 74(18); 5266-76. ©2014 AACR.


Assuntos
Fatores de Transcrição E2F/genética , Proteína do Retinoblastoma/genética , Animais , Processos de Crescimento Celular/genética , Fatores de Transcrição E2F/metabolismo , Inativação Gênica , Humanos , Camundongos , Proteína do Retinoblastoma/metabolismo , Transfecção
4.
PLoS One ; 8(3): e59811, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555789

RESUMO

The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.


Assuntos
Derme/embriologia , Derme/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/embriologia , Gordura Subcutânea/embriologia , Adipogenia , Adiposidade , Animais , Compostos Azo , Proteínas de Fluorescência Verde/metabolismo , Folículo Piloso/metabolismo , Imuno-Histoquímica , Lasers , Lipídeos/química , Masculino , Camundongos , Microscopia de Fluorescência , Gordura Subcutânea/metabolismo , Fatores de Tempo
5.
DNA Repair (Amst) ; 12(1): 46-52, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23228367

RESUMO

Mismatch repair (MMR) proteins have critical roles in the maintenance of genomic stability, both class-switch recombination and somatic hypermutation of immunoglobulin genes and disease-associated trinucleotide repeat expansions. In the genetic absence of MMR, certain tissues are predisposed to mutations and cancer. MMR proteins are involved in various functions including protection from replication-associated and non-mitotic mutations, as well as driving programmed and deleterious mutations, including disease-causing trinucleotide repeat expansions. Here we have assessed the levels of MSH2, MSH3, and MSH6 expression in a large number of murine tissues by transcript analysis and simultaneous Western blotting. We observed that MMR expression patterns varied widely between 14 different tissue types, but did not vary with age (13-84 weeks). MMR protein expression is highest in testis, thymus and spleen and lowest in pancreas, quadriceps and heart, with intermediate levels in liver, kidney, intestine, colon, cortex, striatum and cerebellum. By equalizing antibody signal intensity to represent levels found in mMutSα and mMutSß purified proteins, we observed that mMSH3 protein levels are greater than mMSH6 levels in the multiple tissues analyzed, with more MSH6 in proliferating tissues. In the intestinal epithelium MSH3 and MSH6 are more highly expressed in the proliferative undifferentiated cells of the crypts than in the differentiated villi cells, as reported for MSH2. This finding correlates with the higher level of MMR expression in highly proliferative mouse tissues such as the spleen and thymus. The relative MMR protein expression levels may explain the functional and tissue-specific reliance upon the roles of each MMR protein.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas/metabolismo , Fatores Etários , Animais , Proliferação de Células , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mucosa Intestinal/metabolismo , Camundongos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS , Especificidade de Órgãos , Proteínas/genética , RNA Mensageiro/biossíntese , Transcrição Gênica
6.
J Cell Sci ; 122(Pt 3): 401-13, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19126678

RESUMO

It is well documented that adipogenic differentiation of the cell is associated with downregulation of Wnt/beta-catenin signalling. Using preadipocytes and dermal fibroblasts, we have found that activation of the adipogenic program was associated with marked changes in the expression of nuclear beta-catenin-interacting partners, emerin and lamins A/C, to influence expression and activation of peroxisome proliferators-activated receptors gamma (PPARgamma). In addition, silencing of protein expression with siRNA revealed that beta-catenin and emerin influenced each other's levels of expression and the onset of adipogenesis, suggesting that changes in the expression of nuclear lamina proteins were intimately linked to the stability of beta-catenin. By contrast, dermal fibroblasts, which are emerin null, demonstrated increased nuclear accumulation of stable beta-catenin and constant lamin expression. This was also associated with an unusual adipogenic capacity of the cells, with adipogenesis occurring in the presence of activated beta-catenin but declining upon silencing of the protein expression with siRNA. We propose that the process of adipogenesis is affected by a dynamic link between complexes of emerin and lamins A/C at the nuclear envelope and nucleocytoplasmic distribution of beta-catenin, to influence cellular plasticity and differentiation.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Lamina Tipo A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , beta Catenina/metabolismo , Adipócitos/citologia , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Camundongos , Proteínas Nucleares/genética , PPAR gama/metabolismo , RNA Interferente Pequeno/metabolismo , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA