Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 22(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481314

RESUMO

Carotenoids are essential for plant and animal nutrition, and are important factors in the variation of pigmentation in fruits, leaves, and flowers. Tomato is a model crop for studying the biology and biotechnology of fleshy fruits, particularly for understanding carotenoid biosynthesis. In commercial tomato cultivars and germplasms, visual phenotyping of the colors of ripe fruits can be done easily. However, subsequent analysis of metabolic profiling is necessary for hypothesizing genetic factors prior to performing time-consuming genetic analysis. We used high performance liquid chromatography (HPLC), employing a C30 reverse-phase column, to efficiently resolve nine carotenoids and isomers of several carotenoids in yellow, orange, and red colored ripe tomatoes. High content of lycopene was detected in red tomatoes. The orange tomatoes contained three dominant carotenoids, namely δ-carotene, ß-carotene, and prolycopene. The yellow tomatoes showed low levels of carotenoids compared to red or orange tomatoes. Based on the HPLC profiles, genes responsible for overproducing δ-carotene and prolycopene were described as lycopene ε-cyclase and carotenoid isomerase, respectively. Subsequent genetic analysis using DNA markers for segregating population and germplasms were conducted to confirm the hypothesis. This study establishes the usefulness of metabolic profiling for inferring the genetic determinants of fruit color.


Assuntos
Carotenoides , Frutas , Pigmentação/genética , Solanum lycopersicum , Carotenoides/biossíntese , Carotenoides/genética , Frutas/genética , Frutas/metabolismo , Marcadores Genéticos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
2.
J Microbiol ; 58(7): 574-587, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32323196

RESUMO

Multiple transcriptional regulators play important roles in the coordination of developmental processes, including asexual and sexual development, and secondary metabolism in the filamentous fungus Aspergillus nidulans. In the present study, we characterized a novel putative C2H2-type transcription factor (TF), RocA, in relation to development and secondary metabolism. Deletion of rocA increased conidiation and caused defective sexual development. In contrast, the overexpression of rocA exerted opposite effects on both phenotypes. Additionally, nullifying rocA resulted in enhanced brlA expression and reduced nsdC expression, whereas its overexpression exerted the opposite effects. These results suggest that RocA functions as a negative regulator of asexual development by repressing the expression of brlA encoding a key asexual development activator, but as a positive regulator of sexual development by enhancing the expression of nsdC encoding a pivotal sexual development activator. Deletion of rocA increased the production of sterigmatocystin (ST), as well as the expression of its biosynthetic genes, aflR and stcU. Additionally, the expression of the biosynthetic genes for penicillin (PN), ipnA and acvA, and for terrequinone (TQ), tdiB and tdiE, was increased by rocA deletion. Thus, it appears that RocA functions as a negative transcriptional modulator of the secondary metabolic genes involved in ST, PN, and TQ biosynthesis. Taken together, we propose that RocA is a novel transcriptional regulator that may act either positively or negatively at multiple target genes necessary for asexual and sexual development and secondary metabolism.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Metabolismo Secundário/genética , Transativadores/genética , Proteínas Fúngicas/genética , Indóis/metabolismo , Penicilinas/biossíntese , Metabolismo Secundário/fisiologia , Esterigmatocistina/biossíntese , Transcrição Gênica/genética
3.
ACS Appl Mater Interfaces ; 5(3): 822-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23323938

RESUMO

We report electrical measurements of films of carbon quantum dots (CQDs) that serve as the channels of field-effects transistors (FETs). To investigate the dependence of the field-effect mobility on ligand length, colloidal CQDs are synthesized and ligand-exchanged with several primary amines of different ligand lengths. We measure current as a function of gate voltage and find that the devices show ambipolar conductivity, with electron and hole mobilities as high as 8.49 × 10(-5) and 3.88 × 10(-5) cm(2) V(-1) s(-1), respectively. The electron mobilities are consistently 2-4 times larger than the hole mobilities. Furthermore, the mobilities decrease exponentially with the increase of the ligand length, which is well-described by the Miller-Abrahams model for nearest-neighbor hopping. Our results provide a theoretical basis to examine charge transport in CQD films and offer new prospects for the fabrication of high-mobility CQD-based optoelectronic devices, including solar cells, light-emitting devices, and optical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA