Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Emerg Infect Dis ; 26(5): 1002-1006, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32310056

RESUMO

We isolated Japanese encephalitis virus genotype 5 from human specimens in South Korea. Whole-genome analysis showed 90.4% identity with other genotype 5 viruses from humans. This virus had a unique insertion in the NS4A gene. However, the envelope protein contained Lys 84, which was specific to strains of genotype 5 viruses from South Korea.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Sequência de Aminoácidos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/epidemiologia , Genótipo , Humanos , Filogenia , República da Coreia
2.
Asian-Australas J Anim Sci ; 31(8): 1098-1102, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29642687

RESUMO

OBJECTIVE: Temperament can be defined as a type of behavioral tendency that appears in a relatively stable manner in responses to various external stimuli over time. The aim of this study was to estimate genetic parameters for the records of temperament testing that are used to improve the temperament of Jeju crossbred (Jeju×Thoroughbred) horses. METHODS: This study was conducted using 205 horses (101 females and 104 males) produced between 2010 and 2015. The experimental animals were imprinted and tamed according to the Manual for Horse Taming and Evaluation for Therapeutic Riding Horses and evaluated according to the categories for temperament testing (gentleness, patience, aggressiveness, sensitivity, and friendliness) between 15 months and 18 months of age. Each category was scored on a five-point linear scale. Genetic parameters for the test categories were analyzed using a multi-trait mixed model with repeated records. The ASReml program was used to analyze the data. RESULTS: The heritability of gentleness, patience, aggressiveness, sensitivity and friendliness ranged from 0.08 to 0.53. The standard errors of estimated heritability ranged from 0.13 to 0.17. The test categories showed high genetic correlations with each other, ranging from 0.96 to 0.99 and high repeatability, ranging from 0.70 to 0.73. CONCLUSION: The results of this study showed that the test categories had moderate heritability and high genetic correlations, but additional studies may be necessary to use the results for the improvement programs of the temperament of Jeju crossbred horses.

3.
Korean J Physiol Pharmacol ; 21(1): 27-36, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28066138

RESUMO

Angelicae Gigantis Radix (AGR, Angelica gigas) has been used for a long time as a traditional folk medicine in Korea and oriental countries. Decursinol angelate (DCA) is structurally isomeric decursin, one of the major components of AGR. This study was performed to confirm whether DCA augments pentobarbital-induced sleeping behaviors via the activation of GABAA-ergic systems in animals. Oral administration of DCA (10, 25 and 50 mg/kg) markedly suppressed spontaneous locomotor activity. DCA also prolonged sleeping time, and decreased the sleep latency by pentobarbital (42 mg/kg), in a dose-dependent manner, similar to muscimol, both at the hypnotic (42 mg/kg) and sub-hypnotic (28 mg/kg) dosages. Especially, DCA increased the number of sleeping animals in the sub-hypnotic dosage. DCA (50 mg/kg, p.o.) itself modulated sleep architectures; DCA reduced the counts of sleep/wake cycles. At the same time, DCA increased total sleep time, but not non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. In the molecular experiments. DCA (0.001, 0.01 and 0.1 µg/ml) increased intracellular Cl- influx level in hypothalamic primary cultured neuronal cells of rats. In addition, DCA increased the protein expression of glutamic acid decarboxylase (GAD65/67) and GABAA receptors subtypes. Taken together, these results suggest that DCA potentiates pentobarbital-induced sleeping behaviors through the activation of GABAA-ergic systems, and can be useful in the treatment of insomnia.

5.
Front Plant Sci ; 13: 1041764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420040

RESUMO

Accumulation of high sodium (Na+) leads to disruption of metabolic processes and decline in plant growth and productivity. Therefore, this study was undertaken to clarify how Na+/H+ exchangers and Na+/K+ transporter genes contribute to Na+ homeostasis and the substantial involvement of lignin biosynthesis genes in salt tolerance in alfalfa (Medicago sativa L.), which is poorly understood. In this study, high Na+ exhibited a substantial reduction of morphophysiological indices and induced oxidative stress indicators in Xingjiang Daye (XJD; sensitive genotype), while Zhongmu (ZM; tolerant genotype) remained unaffected. The higher accumulation of Na+ and the lower accumulation of K+ and K+/(Na+ + K+) ratio were found in roots and shoots of XJD compared with ZM under salt stress. The ZM genotype showed a high expression of SOS1 (salt overly sensitive 1), NHX1 (sodium/hydrogen exchanger 1), and HKT1 (high-affinity potassium transporter 1), which were involved in K+ accumulation and excess Na+ extrusion from the cells compared with XJD. The lignin accumulation was higher in the salt-adapted ZM genotype than the sensitive XJD genotype. Consequently, several lignin biosynthesis-related genes including 4CL2, CCoAOMT, COMT, CCR, C4H, PAL1, and PRX1 exhibited higher mRNA expression in salt-tolerant ZM compared with XJD. Moreover, antioxidant enzyme (catalase, superoxide dismutase, ascorbate peroxidase, and glutathione reductase) activity was higher in ZM relative to XJD. This result suggests that high antioxidant provided the defense against oxidative damages in ZM, whereas low enzyme activity with high Na+ triggered the oxidative damage in XJD. These findings together illustrate the ion exchanger, antiporter, and lignin biosysthetic genes involving mechanistic insights into differential salt tolerance in alfalfa.

6.
Life (Basel) ; 12(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36143461

RESUMO

The frequent occurrence of heat and drought stress can severely reduce agricultural production of field crops. In comparison to a single stress, the combination of both heat (H) and drought (D) further reduce plant growth, survival and yield. This study aimed to explore the transcriptional responses of heat shock protein (HSP) and antioxidant genes under H combined D stress in perennial rye grass (PRG). The results demonstrated that oxidative stress indicators (hydrogen peroxide, lipid peroxidation) significantly increased, particularly in the case of combined H and D treatment, suggesting that oxidative stress-induced damage occurred in plants under the combined stresses. Transcriptional responses of heat shock protein 70 (HSP70), heat shock protein 90-6 (HSP90-6), and the mitochondrial small heat shock protein HSP26.2 (HSP26.2) occurred rapidly, and showed high level of expression particularly under H and D stress. Antioxidant genes including ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), copper-zinc superoxide dismutase (Cu/ZnSOD), peroxidase (POD), ferredoxin-thioredoxin (FTR), thioredoxin (Trx), 2-cysteine peroxiredoxin (2-Cys Prx) showed response to combined H and D, followed by either D or H stress alone in rye grass. An interactome map revealed the close partnership of these heat shock protein genes and antioxidant genes, respectively. These candidate genes were predominantly linked to stress responses and antioxidant defense in plants. These findings may advance our understanding about the HSP and the antioxidant genes underlying combined abiotic stress response and tolerance in perennial rye grass.

7.
Genes (Basel) ; 12(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34573305

RESUMO

Fatty acid (FA) composition is one of the most important parameters for the assessment of meat quality in pigs. The FA composition in pork can also affect human health. Our aim was to identify quantitative trait loci (QTLs) and positional candidate genes affecting the FA profile of the longissimus dorsi muscle in a large F2 intercross between Landrace and Korean native pigs comprising 1105 F2 progeny by genome-wide association studies (GWAS) and post-GWAS high-resolution mapping analyses. We performed GWAS using the PorcineSNP60K BeadChip and a linear mixed model. Four genome-wide significant QTL regions in SSC8, SSC12, SSC14, and SSC16 were detected (p < 2.53 × 10-7). Several co-localizations of QTLs in SSC12 for oleic acid, linoleic acid, arachidonic acid, monounsaturated FAs, polyunsaturated FAs, and the polyunsaturated/saturated FA ratio were observed. To refine the QTL region in SSC12, a linkage and linkage disequilibrium analysis was applied and could narrow down the critical region to a 0.749 Mb region. Of the genes in this region, GAS7, MYH2, and MYH3 were identified as strong novel candidate genes based on further conditional association analyses. These findings provide a novel insight into the genetic basis of FA composition in pork and could contribute to the improvement of pork quality.


Assuntos
Estudo de Associação Genômica Ampla
8.
Genes Genomics ; 40(11): 1249-1258, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30099720

RESUMO

The Jeju horse is an indigenous Korean horse breed that is currently registered with the Food and Agriculture Organization of the United Nations. However, there is severe lack of genomic studies on Jeju horse. This study was conducted to investigate genetic characteristics of horses including Jeju horse, Thoroughbred and Jeju crossbred (Jeju × Thoroughbred) populations. We compared the genomes of three horse populations using the Equine SNP70 Beadchip array. Short-range Linkage disequilibrium was the highest in Thoroughbred, whereas r2 values were lowest in Jeju horse. Expected heterozygosity was the highest in Jeju crossbred (0.351), followed by the Thoroughbred (0.337) and Jeju horse (0.311). The level of inbreeding was slightly higher in Thoroughbred (- 0.009) than in Jeju crossbred (- 0.035) and Jeju horse (- 0.038). FST value was the highest between Jeju horse and Thoroughbred (0.113), whereas Jeju crossbred and Thoroughbred showed the lowest value (0.031). The genetic relationship was further assessed by principal component analysis, suggesting that Jeju crossbred is more genetically similar to Thoroughbred than Jeju horse population. Additionally, we detected potential selection signatures, for example, in loci located on LCORL/NCAPG and PROP1 genes that are known to influence body. Genome-wide analyses of the three horse populations showed that all the breeds had somewhat a low level of inbreeding within each population. In the population structure analysis, we found that Jeju crossbred was genetically closer to Thoroughbred than Jeju horse. Furthermore, we identified several signatures of selection which might be associated with traits of interest. To our current knowledge, this study is the first genomic research, analyzing genetic relationships of Jeju horse, Thoroughbred and Jeju crossbred.


Assuntos
Cavalos/genética , Polimorfismo de Nucleotídeo Único , Animais , Tamanho Corporal/genética , Cruzamentos Genéticos , Genoma , Técnicas de Genotipagem/normas , Heterozigoto , Endogamia , Desequilíbrio de Ligação , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal
9.
Arch Pharm Res ; 39(9): 1307-12, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27457068

RESUMO

A human study of the effects on hemodynamics of caffeine and epigallocatechin-3-O-gallate (EGCG) was performed. Caffeine tablets (200 mg) were orally administered to healthy males aged between 25 and 35 years 30 min after oral administration of EGCG tablets (100 and 200 mg). The increase in BP induced by caffeine was inhibited when co-administrated with EGCG. We found that caffeine slightly decreased heart rate (HR) in the volunteers. Although EGCG enhanced HR reduction, the effect was not significant. In addition, caffeine increased blood catecholamine levels, but EGCG inhibited the increase in noradrenaline, adrenaline and dopamine levels induced by caffeine. Whether EGCG decreases the elevated HR and systolic perfusion pressure, and ventricular contractility induced by adrenergic agonists in the isolated rat heart was investigated. The modified Krebs-Henseleit solution was perfused through a Langendorff apparatus to the isolated hearts of rats. HR, systolic perfusion pressure, and developed maximal rates of contraction (+dP/dtmax) and relaxation (-dP/dtmax) were increased by epinephrine (EP) and isoproterenol (IP). In contrast, EGCG decreased the elevated HR, systolic perfusion pressure, and left ventricular ±dp/dtmax induced by EP and/or IP. In conclusion, EGCG could attenuate the hemodynamics stimulated by caffeine through decreasing catecholamine release.


Assuntos
Cafeína/administração & dosagem , Catequina/análogos & derivados , Catecolaminas/antagonistas & inibidores , Hemodinâmica/efeitos dos fármacos , Adulto , Animais , Cafeína/metabolismo , Catequina/administração & dosagem , Catequina/metabolismo , Catecolaminas/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas/fisiologia , Hemodinâmica/fisiologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA