Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 151(1): 79-90, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314908

RESUMO

Cordycepin, an adenosine analog, has been reported to improve cognitive function, but which seems to be inconsistent with the reports showing that cordycepin inhibited long-term potentiation (LTP). Behavioral-LTP is usually used to study long-term synaptic plasticity induced by learning tasks in freely moving animals. In order to investigate simultaneously the effects of cordycepin on LTP and behavior in rats, we applied the model of behavioral-LTP induced by Y-maze learning task through recording population spikes in hippocampal CA1 region. Golgi staining and Sholl analysis were employed to assess the morphological structure of dendrites in pyramidal cells of hippocampal CA1 area, and western blotting was used to examine the level of adenosine A1 receptors and A2A receptors (A2AR). We found that cordycepin significantly improved behavioral-LTP magnitude, accompanied by increases in the total length of dendrites, the number of intersections and spine density but did not affect Y-maze learning task. Furthermore, cordycepin obviously reduced A2AR level without altering adenosine A1 receptors level; and the agonist of A2AR (CGS 21680) rather than antagonist (SCH 58261) could reverse the potentiation of behavioral-LTP induced by cordycepin. These results suggested that cordycepin improved behavioral-LTP and morphological structure of dendrite in hippocampal CA1 but did not contribute to the improvement of learning and memory. And cordycepin improved behavioral-LTP may be through reducing the level of A2AR in hippocampus. Collectively, the effects of cordycepin on cognitive function and LTP were complex and involved multiple mechanisms.


Assuntos
Região CA1 Hipocampal/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Animais , Masculino , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
2.
Biomacromolecules ; 19(1): 31-41, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29172501

RESUMO

Photodynamic therapy (PDT), combining the laser and photosensitizers to kill tumor cells, has the potential to address many current medical requirements. In this study, magnetic Fe3O4 nanoparticles were first employed as cores and modified with oleic acid (OA) and 3-triethoxysilyl-1-propanamine. Then, the photosensitizers phycocyanin (PC) and hematoporphyrin monomethyl ether (HMME), which might be able to stimulate the cell release of reactive oxygen species after the irradiation of a near-infrared (NIR) laser, were grafted on the surface of such nanoparticles. Our results revealed the high-efficiency inhibition of breast cancer MCF-7 cells growing upon near-infrared irradiation both in vitro and in vivo. Furthermore, it was the synergy between the natural photosensitizers PC and the synthetic photosensitizers HMME that deeply influenced such inhibition compared to the groups that used either of these medicines alone. To utilize the combination of different photosensitive agents, our study thus provides a new strategy for breast cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hematoporfirinas/uso terapêutico , Nanopartículas de Magnetita/química , Fármacos Fotossensibilizantes/química , Ficocianina/uso terapêutico , Animais , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Feminino , Hematoporfirinas/administração & dosagem , Hematoporfirinas/farmacologia , Hematoporfirinas/toxicidade , Humanos , Raios Infravermelhos , Células MCF-7 , Nanopartículas de Magnetita/toxicidade , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Ficocianina/administração & dosagem , Ficocianina/farmacologia , Ficocianina/toxicidade
3.
Biochem Biophys Res Commun ; 478(1): 227-233, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27425252

RESUMO

SRC-3 is widely expressed in multiple tumor types and involved in cancer cell proliferation and apoptosis. Histone deacetylase (HDAC) inhibitors are promising antitumor drugs. However, the poor efficacy of HDAC inhibitors in solid tumors has restricted its further clinical application. Here, we reported the novel finding that depletion of SRC-3 enhanced sensitivity of breast and lung cancer cells to HDAC inhibitors (SAHA and romidepsin). In contrast, overexpression of SRC-3 decreased SAHA-induced cancer cell apoptosis. Furthermore, we found that SRC-3 inhibitor bufalin increased cancer cell apoptosis induced by HDAC inhibitors. The combination of bufalin and SAHA was particular efficient in attenuating AKT activation and reducing Bcl-2 levels. Taken together, these accumulating data might guide development of new breast and lung cancer therapies.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Inibidores de Histona Desacetilases/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Depsipeptídeos/administração & dosagem , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Inativação Gênica , Humanos , Neoplasias Experimentais/patologia , Coativador 3 de Receptor Nuclear/antagonistas & inibidores
4.
Inorg Chem ; 55(4): 1412-22, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26811966

RESUMO

Two new dinuclear Ru(II) polypyridyl complexes containing three and ten methylene chains in their bridging linkers are synthesized and characterized. Their calf thymus DNA-binding and plasmid DNA photocleavage behaviors are comparatively studied with a previously reported, six-methylene-containing analog by absorption and luminescence spectroscopy, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, DNA viscosity measurements, DNA thermal denaturation, and agarose gel electrophoresis analyses. Theoretical calculations applying the density functional theory (DFT) method for the three complexes are also performed to understand experimentally observed DNA binding properties. The results show that the two complexes partially intercalate between the base pairs of DNA. Cellular uptake and colocalization studies have demonstrated that the complexes could enter HeLa cells efficiently and localize within lysosomes. The in-vitro antitumor activity against HeLa and MCF-7 tumor cells of the complexes are studied by MTT cytotoxic analysis. A new method, high-content analysis (HCA), is also used to assess cytotoxicity, apoptosis and cell cycle arrest of the three complexes. The results show that the lengths of the alkyl linkers could effectively tune their biological properties and that HCA is suitable for rapidly identifying cytotoxicity and can be substituted for MTT assays to evaluate the cell cytotoxicity of chemotherapeutic agents.


Assuntos
DNA/metabolismo , Compostos de Rutênio/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Eletroforese em Gel de Ágar , Células HeLa , Humanos , Técnicas In Vitro , Células MCF-7 , Processos Fotoquímicos , Compostos de Rutênio/farmacologia
5.
Chembiochem ; 16(16): 2357-64, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26345273

RESUMO

The new amphiphilic BODPY-porphyrin conjugate BZnPP and its precursor BZnPH were synthesised, and their linear and two-photon photophysical properties, together with their cellular uptake and photo-cytotoxicity, were studied. This amphiphilic conjugate consists of a hydrophobic BODIPY moiety and a hydrophilic tetra(ethylene glycol) chain bridging a cationic triphenylphosphonium group to an amphiphilic porphyrin ZnP through acetylide linkers at its meso positions. A large two-photon absorption cross-section (σ=1725 GM) and a high singlet oxygen quantum yield (0.52) were recorded. Intense linear- and two-photon-induced red emissions were also observed for both BZnPP and BZnPH. Further in vitro studies showed that BZnPP exhibited very efficient cellular uptake and strong photocytotoxic but weak dark cytotoxic properties towards human breast carcinoma MCF-7 cells. In summary, the two-photon-induced emission and the potent photo-cytotoxicity of BZnPP make it an efficacious dual-purpose tumour-imaging and photodynamic therapeutic agent in the tissue-transparent spectral windows.


Assuntos
Compostos de Boro/química , Fármacos Fotossensibilizantes/química , Porfirinas/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Microscopia Confocal , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/toxicidade , Teoria Quântica , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
6.
BMC Mol Cell Biol ; 25(1): 19, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090552

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection poses a substantial threat to human health, impacting not only infected individuals but also potentially exerting adverse effects on the health of their offspring. The underlying mechanisms driving this phenomenon remain elusive. This study aims to shed light on this issue by examining alterations in paternally imprinted genes within sperm. METHODS: A cohort of 35 individuals with normal semen analysis, comprising 17 hepatitis B surface antigen (HBsAg)-positive and 18 negative individuals, was recruited. Based on the previous research and the Online Mendelian Inheritance in Man database (OMIM, https://www.omim.org/ ), targeted promoter methylation sequencing was employed to investigate 28 paternally imprinted genes associated with various diseases. RESULTS: Bioinformatic analyses revealed 42 differentially methylated sites across 29 CpG islands within 19 genes and four differentially methylated CpG islands within four genes. At the gene level, an increase in methylation of DNMT1 and a decrease in methylation of CUL7, PRKAG2, and TP53 were observed. DNA methylation haplotype analysis identified 51 differentially methylated haplotypes within 36 CpG islands across 22 genes. CONCLUSIONS: This is the first study to explore the effects of HBV infection on sperm DNA methylation and the potential underlying mechanisms of intergenerational influence of paternal HBV infection.


Assuntos
Ilhas de CpG , Metilação de DNA , Impressão Genômica , Vírus da Hepatite B , Hepatite B , Regiões Promotoras Genéticas , Espermatozoides , Humanos , Masculino , Metilação de DNA/genética , Regiões Promotoras Genéticas/genética , Espermatozoides/metabolismo , Ilhas de CpG/genética , Impressão Genômica/genética , Hepatite B/genética , Hepatite B/virologia , Adulto , Vírus da Hepatite B/genética , Haplótipos/genética , Pessoa de Meia-Idade
7.
J Nanosci Nanotechnol ; 13(2): 1212-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646605

RESUMO

Nanomedicine and nanotechnology have provided an effective platform for integration of therapeutic and diagnostic agents. Single-walled carbon nanotubes (SWCNTs), a highly effective means of transporting cargos of various sizes and types across the cell membrane, are gradually playing a bigger and more important role in the field of nanomedicine. In this study, a novel nanoprobe based on SWCNTs and a fluorescent photosensitizer pyropheophorbide a (PPa), was developed and was used for cancer cell imaging and therapy in vitro. Phospholipids bearing polyehylene-glycol modified SWCNTs that can provide an interface for the conjugation of PPa were prepared by ultrasonication. The polyehylene-glycol modified SWCNTs were then conjugated with PPa by using covalent functionalization method to construct SWCNT-PEG-PPa nanoprobe. The functionalization of SWCNTs was evidenced by UV-vis absorption spectra and fluorescence spectra. Imaging of cancer cells with SWCNT-PEG-PPa nanoprobe was confirmed using two cancer cell lines via laser scanning confocal microscope tests, and killing of cancer cells with SWCNT-PEG-PPa was demonstrated using cytotoxicity tests. Moreover, the stability of SWCNT-PEG-PPa was further investigated. Our experiments indicated that the resulting SWCNT-PEG-PPa nanoprobe should have a great potential to be a potent candidate for cancer imaging and therapy.


Assuntos
Nanotubos de Carbono , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Humanos , Neoplasias/patologia , Células Tumorais Cultivadas
8.
Mol Pharm ; 9(3): 514-22, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22332810

RESUMO

Indocyanine green (ICG) is a conventional dye that can be used in clinical near-infrared (NIR) imaging, and it is also an effective light absorber for laser-mediated photothermal therapy. However, applications of ICG were limited due to its fast degradation in aqueous media and quick clearance from the body. Herein, an ICG-containing nanostructure, ICG-PL-PEG, was developed for photothermal therapy, which was self-assembled by ICG and phospholipid-polyethylene glycol (PL-PEG). Our in vitro and in vivo experiments demonstrated that ICG-PL-PEG suspension was more efficient in producing a NIR-dependent temperature increase than ICG alone, due to the increase of ICG monomers from the addition of PL-PEG to match the central wavelength of the 808 nm laser. When conjugated with integrin α(v)ß(3) monoclonal antibody (mAb), ICG-PL-PEG could be selectively internalized and retained in target tumor cells. Irradiation of an 808 nm laser after intravenous administration of ICG-PL-PEG-mAb resulted in tumor suppression in mice, while ICG alone had only limited effect. This is the first time an ICG-containing nanostructure has been used through systemic administration to achieve an efficient in vivo photothermal effect for cancer treatment. Therefore, ICG-PL-PEG could be used as a fluorescent marker as well as a light-absorber for imaging-guided photothermal therapy. All the components of ICG-PL-PEG have been approved for human use. Therefore, this unique ICG-containing nanostructure has great potential in clinical applications.


Assuntos
Verde de Indocianina/química , Nanoestruturas/química , Fosfolipídeos/química , Polietilenoglicóis/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Humanos , Injeções Intravenosas , Integrina alfaVbeta3/imunologia , Camundongos , Microscopia Confocal
9.
Mol Pharm ; 9(6): 1580-9, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22533630

RESUMO

Near-infrared (NIR)-to-visible upconversion nanoparticle (UCNP) has shown promising prospects in photodynamic therapy (PDT) as a drug carrier or energy donor. In this work, a photosensitizer pyropheophorbide a (Ppa) and RGD peptide c(RGDyK) comodified chitosan-wrapped NaYF(4):Yb/Er upconversion nanoparticle UCNP-Ppa-RGD was developed for targeted near-infrared photodynamic therapy. The properties of UCNP-Ppa-RGD, such as morphology, stability, optical spectroscopy and singlet oxygen generation efficiency, were investigated. The results show that covalently linked pyropheophorbide a molecule not only is stable but also retains its spectroscopic and functional properties. In vitro studies confirm a stronger targeting specificity of UCNP-Ppa-RGD to integrin α(v)ß(3)-positive U87-MG cells compared with that in the corresponding negative group. The photosensitizer-attached nanostructure exhibited low dark toxicity and high phototoxicity against cancer cells upon 980 nm laser irradiation at an appropriate dosage. These results represent the first demonstration of a highly stable and efficient photosensitizer modified upconversion nanostructure for targeted near-infrared photodynamic therapy of cancer cells. The novel UCNP-Ppa-RGD nanoparticle may provide a powerful alternative for near-infrared photodynamic therapy with an improved tumor targeting specificity.


Assuntos
Quitosana/química , Clorofila/análogos & derivados , Nanopartículas/química , Oligopeptídeos/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofila/química , Humanos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
J Mater Chem B ; 10(28): 5410-5421, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35775500

RESUMO

Photodynamic therapy (PDT) is a promising cancer therapy modality due to its intrinsically negligible side effects and treatment resistance. However, the development of the high-efficiency PDT still remains a challenge. Herein, a nanodrug platform PEG-Ce6-PEI@PB combined tumor acidity-induced polyethyleneimine (PEI) cytotoxicity with an oxygen self-supply property is developed for dual-enhanced PDT. The obtained PEG-Ce6-PEI@PB presents suppressed PEI cytotoxicity and chlorin e6 (Ce6) phototoxicity during the bloodstream before becoming active in tumor tissues/cells. The acidic tumor microenvironment can shed PEG coating to rebound PEI positive charges, facilitating tumor cell uptake and reverting the PEI cytotoxicity to enhance following PDT. Moreover, Prussian blue (PB) nanozymes with catalase-like activity can convert endogenous hydrogen peroxide into oxygen to relieve tumor hypoxia, which is attributed to the photosensitizer Ce6 producing more cytotoxic reactive oxygen species upon laser irradiation to further strengthen PDT. Moreover, PEG-Ce6-PEI@PB exhibits good biocompatibility and long blood circulation. More importantly, PEG-Ce6-PEI@PB-treated breast cancer cells and tumor-bearing mice present effective therapeutic efficacy upon laser irradiation, verifying the synergistic antitumor effects of PEI cytotoxicity and oxygen self-supplying PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Animais , Ferrocianetos , Camundongos , Oxigênio , Polietilenoglicóis , Polietilenoimina , Hipóxia Tumoral
11.
Small ; 7(19): 2727-35, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21861293

RESUMO

Nanomaterials have recently attracted much attention as efficient transducers for cancer photothermal therapy, based on their intrinsic absorption properties in the near-infrared region. This study explores a novel therapy model with mitochondria-targeting single-walled carbon nanotubes (SWNTs), which act efficiently to convert 980-nm laser energy into heat and selectively destroy the target mitochondria, thereby inducing mitochondrial depolarization, cytochrome c release, and caspase 3 activation. The laser+SWNTs process affords remarkable efficacy in suppressing tumor growth in a breast cancer model, and results in complete tumor regression in some cases. Laser+SWNTs could prove to be a promising selective local treatment modality, while minimizing adverse side effects.


Assuntos
Hipertermia Induzida , Mitocôndrias/metabolismo , Nanotubos de Carbono/química , Neoplasias/terapia , Fototerapia , Animais , Morte Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Lasers , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Polietilenoglicóis/química
12.
Mol Pharm ; 8(2): 447-56, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21197955

RESUMO

Indocyanine green (ICG) is a near-infrared (NIR) imaging agent and is also an ideal light absorber for laser-mediated photothermal therapy. This NIR dye could serve as a basis of a dual-functional probe with integrated optical imaging and photothermal therapy capabilities. However, applications of ICG remain limited by its concentration-dependent aggregation, poor aqueous stability, nonspecific binding to proteins and lack of target specificity. To overcome these limitations, a novel ICG-containing nanostructure is designed utilizing the noncovalent self-assembly chemistry between phospholipid-polyethylene glycol (PL-PEG) and ICG. The interactions between both amphiphilic ICG and PL-PEG were studied using absorption and fluorescence spectroscopy. The properties of ICG-PL-PEG nanoprobe, such as absorption and fluorescence spectra, stability, morphology and size distribution, were also investigated. Two representative targeting molecules, namely, a small molecule, folic acid (FA), and a large protein, integrin α(v)ß3 monoclonal antibody (mAb), were conjugated to the surface of ICG-PL-PEG nanoprobe, displaying the diversity of ligand conjugation. The target specificity was confirmed using three cell lines with different levels of available folate receptors (FRs) or integrin α(v)ß3 expression via laser scanning confocal microscope and flow cytometry. This targeting ICG-PL-PEG nanoprobe could be internalized into targeted cells via ligand-receptor mediated endocytosis pathway. Our in vitro experiments showed that internalized ICG-PL-PEG could be used for cell imaging and selective photothermal cell destruction. These results represent the first demonstration of the dual functionality of ICG-containing nanostructure for targeted optical imaging and photothermal therapy of cancerous cells. This novel ICG-PL-PEG nanostructure, when conjugated with other therapeutic and imaging agents, could become a multifunctional probe for cancer diagnosis and treatment.


Assuntos
Diagnóstico por Imagem , Glioblastoma/terapia , Verde de Indocianina , Neoplasias Mamárias Experimentais/terapia , Nanoestruturas/uso terapêutico , Fotoquimioterapia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Corantes , Corantes Fluorescentes , Ácido Fólico/química , Ácido Fólico/metabolismo , Glioblastoma/patologia , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Terapia a Laser , Neoplasias Mamárias Experimentais/patologia , Camundongos , Microscopia Confocal , Nanoestruturas/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Espectrometria de Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho
13.
Nano Lett ; 10(5): 1677-81, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20369892

RESUMO

Translocation and localization of single-walled carbon nanotubes (SWNTs) in normal and cancerous cells have significant biomedical implications. In this study, SWNTs functionalized with different biomolecules in cells were observed with confocal laser scanning microscopy. Functionalized with PL-PEG, SWNTs were found to localize exclusively in mitochondria of both tumor and normal cells due to mitochondrial transmembrane potential, but they were found mainly in lysosomes of macrophages due to phagocytosis. However, when conjugated with different molecules, the subcellular localization of the surface-modified SWNT-PL-PEG depended on how SWNTs enter the cells: inside mitochondria if crossing cell membrane or inside lysosomes if being endocytosized. We also show that mitochondrial SWNT-PL-PEG, when irradiated with a near-infrared light, can induce cell apoptosis due to mitochondrial damages. These findings provide a better mechanistic understanding of cellular localization of SWNTs, which could lead to advanced biomedical applications such as the design of molecular transporters and development of SWNT-assisted cancer therapies.


Assuntos
Membrana Celular/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Frações Subcelulares/química , Células HeLa , Humanos , Teste de Materiais , Tamanho da Partícula
14.
Front Cell Neurosci ; 15: 783478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002628

RESUMO

Cordycepin exerted significant neuroprotective effects and protected against cerebral ischemic damage. Learning and memory impairments after cerebral ischemia are common. Cordycepin has been proved to improve memory impairments induced by cerebral ischemia, but its underlying mechanism has not been revealed yet. The plasticity of synaptic structure and function is considered to be one of the neural mechanisms of learning and memory. Therefore, we investigated how cordycepin benefits dendritic morphology and synaptic transmission after cerebral ischemia and traced the related molecular mechanisms. The effects of cordycepin on the protection against ischemia were studied by using global cerebral ischemia (GCI) and oxygen-glucose deprivation (OGD) models. Behavioral long-term potentiation (LTP) and synaptic transmission were observed with electrophysiological recordings. The dendritic morphology and histological assessment were assessed by Golgi staining and hematoxylin-eosin (HE) staining, respectively. Adenosine A1 receptors (A1R) and adenosine A2A receptors (A2AR) were evaluated with western blotting. The results showed that cordycepin reduced the GCI-induced dendritic morphology scathing and behavioral LTP impairment in the hippocampal CA1 area, improved the learning and memory abilities, and up-regulated the level of A1R but not A2AR. In the in vitro experiments, cordycepin pre-perfusion could alleviate the hippocampal slices injury and synaptic transmission cripple induced by OGD, accompanied by increased adenosine content. In addition, the protective effect of cordycepin on OGD-induced synaptic transmission damage was eliminated by using an A1R antagonist instead of A2AR. These findings revealed that cordycepin alleviated synaptic dysfunction and dendritic injury in ischemic models by modulating A1R, which provides new insights into the pharmacological mechanisms of cordycepin for ameliorating cognitive impairment induced by cerebral ischemia.

15.
Eur J Pharmacol ; 897: 173946, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607106

RESUMO

Metaplasticity is referred to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), has been considered to be the neural processes underlying learning and memory. Previous observations that cordycepin (an adenosine derivative) improved learning and memory seemed to be contradictory to the findings that cordycepin inhibited LTP. Therefore, we speculated that the conflicting reports of cordycepin might be related to metaplasticity. In the current study, population spike (PS) in hippocampal CA1 area of rats was recorded by using electrophysiological method in vivo. The results showed that cordycepin reduced PS amplitude in hippocampal CA1 with a concentration-dependent relationship, and high frequency stimulation (HFS) failed to induce LTP when cordycepin was intrahippocampally administrated but improved LTP magnitude when cordycepin was pre-treated. Cordycepin increased LTD induced by activating N-Methyl-D-aspartate (NMDA) receptors and subsequently facilitated LTP induced by HFS. Furthermore, we found that 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptors antagonist, could block the roles of cordycepin on LTD and LTP. Collectively, cordycepin was able to modulate metaplasticity in hippocampal CA1 area of rats through adenosine A1 receptors. These findings would be helpful to reconcile the conflicting reports in the literatures and provided new insights into the mechanisms underlying cognitive function promotions with cordycepin treatment.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Região CA1 Hipocampal/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA1 Hipocampal/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Receptor A1 de Adenosina/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo
16.
Biochem Pharmacol ; 180: 114126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603665

RESUMO

BET inhibitors (BETi) exhibit a strong anti-tumor activity in triple-negative breast cancer (TNBC). However, BETi resistance has been reported in TNBC. The mechanisms of resistance have not been demonstrated. Tumor-associated macrophages (TAMs) are frequently involved in cancer cells resistance to chemotherapy, also associated with poor prognosis in TNBC. However, the role of TAMs in BETi resistance remains unknown. Here, we found that BETi JQ1 and I-BET151 exerted anti-tumor effects in TNBC by decreasing IKBKE expression to attenuate NF-κB signaling. TAMs have been reported to associate with chemoresistance in breast cancer. Here, we firstly found that TNBC-stimulated TAMs activated NF-κB signaling by upregulating IKBKE expression to enhance breast cancer cells resistance to BETi. The IKBKE levels were also proved to be higher in clinical TNBC tissues than Non-TNBC tissues, suggesting feedback induction of IKBKE expression by TNBC-stimulated TAMs in TNBC. Moreover, the induction of IKBKE by TAMs in TNBC cells was identified to be associated with STAT3 signaling, which was activated by TAM-secreted IL-6 and IL-10. Lastly, the combination of inhibitors of BET and STAT3 exerted a synergistic inhibition effects in TAM-cocultured or TAM CM-treated TNBC cells in vitro and in vivo. Altogether, our findings illustrated TNBC-activated macrophages conferred TNBC cells resistance to BETi via IL-6 or IL-10/STAT3/IKBKE/NF-κB axis. Blockade of IKBKE or double inhibition of BET and STAT3 might be a novel strategy for treatment of TNBC.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Quinase I-kappa B/genética , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/metabolismo , Macrófagos Associados a Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Técnicas de Cocultura , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Células THP-1 , Neoplasias de Mama Triplo Negativas/patologia , Macrófagos Associados a Tumor/patologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Biomed Opt ; 14(2): 021009, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19405722

RESUMO

Single-walled carbon nanotubes (SWNTs) have a high optical absorbance in the near-infrared (NIR) region. In this special optical window, biological systems are known to be highly transparent. The optical properties of SWNTs provide an opportunity for selective photothermal therapy for cancer treatment. Specifically, CoMoCAT nanotubes with a uniform size (about 0.81 nm) and a narrow absorption peak at 980 nm are ideal candidates for such a novel approach. Here, CoMoCAT SWNTs are conjugated to folate, which can bind specifically to the surface of the folate receptor tumor markers. Folate-SWNT (FA-SWNT) targeted tumor cells were irradiated by a 980-nm laser. In our in vitro and in vivo experiments, FA-SWNT effectively enhanced the photothermal destruction on tumor cells and noticeably spared the photothermal destruction for nontargeted normal cells. Thus, SWNTs, combined with suitable tumor markers, can be used as novel nanomaterials for selective photothermal therapy for cancer treatment.


Assuntos
Apoptose/efeitos da radiação , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Hipertermia Induzida/métodos , Nanotubos de Carbono/efeitos da radiação , Fototerapia/métodos , Animais , Linhagem Celular Tumoral , Raios Infravermelhos/uso terapêutico , Camundongos , Nanomedicina/métodos
18.
Nanotechnology ; 20(10): 105102, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19417509

RESUMO

The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin alpha(v)beta(3) monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin alpha(v)beta(3) monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin alpha(v)beta(3) monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin alpha(v)beta(3)-positive U87MG cells with low cellular toxicity, while for integrin alpha(v)beta(3)-negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Neoplasias da Mama/metabolismo , Portadores de Fármacos/química , Glioblastoma/metabolismo , Integrina alfaVbeta3/imunologia , Nanotubos de Carbono/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/administração & dosagem , Glioblastoma/patologia , Humanos , Integrina alfaVbeta3/química
19.
Eur J Pharmacol ; 853: 325-335, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30978320

RESUMO

Cerebral ischemia impairs physiological form of synaptic plasticity such as long-term potentiation (LTP). Clinical symptoms of cognitive dysfunction resulting from cerebral ischemia are associated with neuron loss and synaptic function impairment in hippocampus. It has been widely reported that cordycepin displays neuroprotective effect on ameliorating cognitive dysfunction induced by cerebral ischemia. Therefore, it is necessary to study whether cordycepin recovers cognitive function after brain ischemia through improving LTP induction. However, there has been very little discussion about the effects of cordycepin on LTP of cerebral ischemia so far. In the present study, we investigated the effects of cordycepin on LTP impairment and neuron loss induced by cerebral ischemia and excitotoxicity, using electrophysiological recording and Nissl staining techniques. The models were obtained by bilateral common carotid artery occlusion (BCCAO) and intrahippocampal NMDA microinjection. We also explored whether adenosine A1 receptors involve in the neuroprotection of cordycepin by using western blot. We found that cordycepin remarkably alleviated LTP impairment and protected pyramidal cell of hippocampal CA1 region against cerebral ischemia and excitotoxicity. Meanwhile, cordycepin prevented the reduction on adenosine A1 receptor level caused by ischemia but did not alter the adenosine A2A receptor level in hippocampal CA1 area. The improvement of LTP in the excitotoxic rats after cordycepin treatment could be blocked by DPCPX, a selective antagonist of adenosine A1 receptor. In summary, our findings provided new insights into the mechanisms of cordycepin neuroprotection in excitotoxic diseases, which is through regulating adenosine A1 receptor to improve LTP formation and neuronal survival.


Assuntos
Desoxiadenosinas/farmacologia , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Receptor A1 de Adenosina/metabolismo , Animais , Contagem de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
20.
Nanomaterials (Basel) ; 8(12)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513749

RESUMO

The study reports a facile and eco-friendly approach for nanomaterial synthesis and enzyme immobilization. A corresponding glucose biosensor was fabricated by immobilizing the gold nanoparticles (AuNPs) and glucose oxidase (GOD) multilayer films onto the polypyrrole (PPy)/reduced graphene oxide (RGO) modified glassy carbon electrode (GCE) via the electrodeposition and self-assembly. PPy and graphene oxide were first coated on the surface of a bare GCE by the electrodeposition. Then, AuNPs and GOD were alternately immobilized onto PPy-RGO/GCE electrode using the electrodeposition of AuNPs and self-assembly of GOD to obtain AuNPs-GOD multilayer films. The resulting PPy-RGO-(AuNPs-GOD)n/GCE biosensors were used to characterize and assess their electrocatalytic activity toward glucose using cyclic voltammetry and amperometry. The response current increased with the increased number of AuNPs-GOD layers, and the biosensor based on four layers of AuNPs-GOD showed the best performance. The PPy-RGO-(AuNPs-GOD)4/GCE electrode can detect glucose in a linear range from 0.2 mM to 8 mM with a good sensitivity of 0.89 µA/mM, and a detection limit of 5.6 µM (S/N = 3). This study presents a promising eco-friendly biosensor platform with advantages of electrodeposition and self-assembly, and would be helpful for the future design of more complex electrochemical detection systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA