Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 538(7624): 222-225, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27602512

RESUMO

Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.

2.
Nature ; 519(7544): 443-5, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25810206

RESUMO

Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

3.
Nature ; 516(7530): 227-30, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25470058

RESUMO

Graphene is increasingly explored as a possible platform for developing novel separation technologies. This interest has arisen because it is a maximally thin membrane that, once perforated with atomic accuracy, may allow ultrafast and highly selective sieving of gases, liquids, dissolved ions and other species of interest. However, a perfect graphene monolayer is impermeable to all atoms and molecules under ambient conditions: even hydrogen, the smallest of atoms, is expected to take billions of years to penetrate graphene's dense electronic cloud. Only accelerated atoms possess the kinetic energy required to do this. The same behaviour might reasonably be expected in the case of other atomically thin crystals. Here we report transport and mass spectroscopy measurements which establish that monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons under ambient conditions, whereas no proton transport is detected for thicker crystals such as monolayer molybdenum disulphide, bilayer graphene or multilayer hBN. Protons present an intermediate case between electrons (which can tunnel easily through atomically thin barriers) and atoms, yet our measured transport rates are unexpectedly high and raise fundamental questions about the details of the transport process. We see the highest room-temperature proton conductivity with monolayer hBN, for which we measure a resistivity to proton flow of about 10 Ω cm(2) and a low activation energy of about 0.3 electronvolts. At higher temperatures, hBN is outperformed by graphene, the resistivity of which is estimated to fall below 10(-3) Ω cm(2) above 250 degrees Celsius. Proton transport can be further enhanced by decorating the graphene and hBN membranes with catalytic metal nanoparticles. The high, selective proton conductivity and stability make one-atom-thick crystals promising candidates for use in many hydrogen-based technologies.

4.
Nature ; 528(7583): E3, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26701059
5.
J Chem Phys ; 142(6): 064704, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681932

RESUMO

Homogeneous nucleation and growth during crystallization of supercooled liquid Cu are investigated with molecular dynamics simulations, and the microstructure is characterized with one- and two-dimensional x-ray diffraction. The resulting solids are single-crystal or nanocrystalline, containing various defects such as stacking faults, twins, fivefold twins, and grain boundaries; the microstructure is subject to thermal fluctuations and extent of supercooling. Fivefold twins form via sequential twinning from the solid-liquid interfaces. Critical nucleus size and nucleation rate at 31% supercooling are obtained from statistical runs with the mean first-passage time and survival probability methods, and are about 14 atoms and 10(32) m(-3)s(-1), respectively. The bulk growth dynamics are analyzed with the Johnson-Mehl-Avrami law and manifest three stages; the Avrami exponent varies in the range of 1-19, which also depends on thermal fluctuations and supercooling.

6.
J Chem Phys ; 140(21): 214317, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24908018

RESUMO

Large-scale molecular dynamics (MD) simulations are performed to investigate homogeneous nucleation and growth of nanovoids during cavitation in liquid Cu. We characterize in detail the atomistic cavitation processes by following the temporal evolution of cavities or voids, analyze the nucleation behavior with the mean first-passage time (MFPT) and survival probability (SP) methods, and discuss the results against classical nucleation theory (CNT), the Tolman equation for surface energy, independent calculation of surface tension via integrating the stress profiles, the Johnson-Mehl-Avrami (JMA) growth law, and the power law for nucleus size distributions. Cavitation in this representative metallic liquid is a high energy barrier Poisson processes, and the steady-state nucleation rates obtained from statistical runs with the MFPT and SP methods are in agreement. The MFPT method also yields the critical nucleus size and the Zeldovich factor. Fitting with the Tolman's equation to the MD simulations yields the surface energy of a planar interface (~0.9 J m⁻²) and the Tolman length (0.4-0.5 Å), and those values are in accord with those from integrating the stress profiles of a planar interface. Independent CNT predictions of the nucleation rate (10(33 - 34) s(-1) m(-3)) and critical size (3-4 Å in radius) are in agreement with the MFPT and SP results. The JMA law can reasonably describe the nucleation and growth process. The size distribution of subcritical nuclei appears to follow a power law with an exponent decreasing with increasing tension owing to coupled nucleation and growth, and that of the supercritical nuclei becomes flattened during further stress relaxation due to void coalescence.

7.
J Chem Phys ; 139(16): 164704, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24182061

RESUMO

We investigate shock response of single crystal and nanocrystalline pentaerythritol tetranitrate (PETN) with a coarse-grained model and molecular dynamics simulations, as regards mechanical hotspot formation in the absence or presence of grain boundaries (GBs). Single crystals with different orientations, and columnar nanocrystalline PETN with regular hexagonal, irregular hexagonal, and random GB patterns, are subjected to shock loading at different shock strengths. In single crystals, shock-induced plasticity is consistent with resolved shear stress calculations and the steric hindrance model, and this deformation leads to local heating. For regular-shaped hexagonal columnar nanocrystalline PETN, different misorientation angles lead to activation of different/same slip systems, different deformation in individual grains and as a whole, different GB friction, different temperature distributions, and then, different hotspot characteristics. Compared to their regular-shaped hexagonal counterpart, nanocrystalline PETN with irregular hexagonal GB pattern and that with random GBs, show deformation and hotspot features specific to their GBs. Driven by stress concentration, hotspot formation is directly related to GB friction and GB-initiated crystal plasticity, and the exact deformation is dictated by grain orientations and resolved shear stresses. GB friction alone can induce hotspots, but the hotspot temperature can be enhanced if it is coupled with GB-initiated crystal plasticity, and the slip of GB atoms has components out of the GB plane. The magnitude of shearing can correlate well with temperature, but the slip direction of GB atoms relative to GBs may play a critical role. Wave propagation through varying microstructure may also induce differences in stress states (e.g., stress concentrations) and loading rates, and thus, local temperature rise. GB-related friction and plasticity induce local heating or mechanical hotspots, which could be precursors to chemical hotspot formation related to initiation in energetic materials, in the absence of other, likely more effective, means for hotspot formation such as void collapse.

8.
R Soc Open Sci ; 6(3): 181707, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31032026

RESUMO

Cytoplasmic viscosity (µ c) is a key biomechanical parameter for evaluating the status of cellular cytoskeletons. Previous studies focused on white blood cells, but the data of cytoplasmic viscosity for tumour cells were missing. Tumour cells (H1299, A549 and drug-treated H1299 with compromised cytoskeletons) were aspirated continuously through a micropipette at a pressure of -10 or -5 kPa where aspiration lengths as a function of time were obtained and translated to cytoplasmic viscosity based on a theoretical Newtonian fluid model. Quartile coefficients of dispersion were quantified to evaluate the distributions of cytoplasmic viscosity within the same cell type while neural network-based pattern recognitions were used to classify different cell types based on cytoplasmic viscosity. The single-cell cytoplasmic viscosity with three quartiles and the quartile coefficient of dispersion were quantified as 16.7 Pa s, 42.1 Pa s, 110.3 Pa s and 74% for H1299 cells at -10 kPa (n cell = 652); 144.8 Pa s, 489.8 Pa s, 1390.7 Pa s, and 81% for A549 cells at -10 kPa (n cell = 785); 7.1 Pa s, 13.7 Pa s, 31.5 Pa s, and 63% for CD-treated H1299 cells at -10 kPa (n cell = 651); and 16.9 Pa s, 48.2 Pa s, 150.2 Pa s, and 80% for H1299 cells at -5 kPa (n cell = 600), respectively. Neural network-based pattern recognition produced successful classification rates of 76.7% for H1299 versus A549, 67.0% for H1299 versus drug-treated H1299 and 50.3% for H1299 at -5 and -10 kPa. Variations of cytoplasmic viscosity were observed within the same cell type and among different cell types, suggesting the potential role of cytoplasmic viscosity in cell status evaluation and cell type classification.

9.
Phytomedicine ; 24: 1-13, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28160848

RESUMO

BACKGROUND: Epidemiological studies indicate there is low incidence of colon cancer in the South Pacific islands, including Fiji, West Samoa, and Vanuatu. Cancer incidence has been shown to be inversely associated with kava (Piper methysticum G. Forst.) ingestion. Hypothesis/Purpose: Kava prepared traditionally will inhibit the growth of human cancer cells. This investigation entails preparation and analysis of kava extracts and study of the growth inhibitory activity of the extracts, alone and combined with hibiscus. STUDY DESIGN: We will prepare kava as in Micronesia - as a water extract, high in particulate content, alone or combined with sea hibiscus (Hibiscus tiliaceus L.) - and examine the components and growth inhibitory activity. METHODS: We obtained ground kava prepared in the traditional way from lateral roots and sea hibiscus mucilage and sap from different sources in Micronesia, and prepared water extracts (unfiltered, as well as filtered, since in traditional use the kava beverage contains a high particulate content) and partitions. We used the MTT assay to determine the growth inhibitory activity of the preparations on colon and breast cancer cells and nonmalignant intestinal epithelial cells. LC-MS analysis was used to examine the components of the kava and sea hibiscus extracts and partitions. RESULTS: Traditional preparations of kava inhibit the growth of breast and colon cancer cells. Among the kava preparations, the order of decreasing activity was Fiji(2), Fiji(1), Hawaii; the unfiltered preparations from Fiji were more active than the filtered. Phytochemical analysis indicated that filtering reduced most kavalactone and chalcone content. For example, for Fiji(2), the ratio of dihydromethysticin in filtered/unfiltered kava was 0.01. Thus, for the extracts from Fiji, growth inhibitory activity correlates with the content of these compounds. Unfiltered and filtered kava from Fiji(1) were more active on malignant than nonmalignant intestinal epithelial cells. Since kava is prepared in Micronesia by squeezing the extract through sea hibiscus bark, we assayed the growth inhibitory activity of combinations of kava and sea hibiscus sap and found that sea hibiscus enhanced the growth inhibitory effect of kava. CONCLUSION: Our results show that traditional kava, alone or combined with sea hibiscus, displays activity against human cancer cells and indicate it will be worthwhile to develop and further analyze these preparations to prevent and treat colon and other cancers. Our findings suggest it is important to examine the activity of plants in the form that people consume them.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Hibiscus/química , Kava/química , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Pironas/farmacologia , Células Tumorais Cultivadas/efeitos dos fármacos , Neoplasias do Colo/epidemiologia , Fiji/epidemiologia , Humanos , Espectrometria de Massas , Fitoterapia , Raízes de Plantas/química , Samoa/epidemiologia , Vanuatu/epidemiologia
10.
J Phys Chem Lett ; 7(5): 806-10, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26885747

RESUMO

It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies.

11.
Nanoscale ; 8(1): 226-32, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646647

RESUMO

Graphene has attracted increasing interest due to its remarkable properties. However, the zero band gap of monolayered graphene limits it's further electronic and optoelectronic applications. Herein, we have synthesized monolayered silicon-doped graphene (SiG) with large surface area using a chemical vapor deposition method. Raman and X-ray photoelectron spectroscopy measurements demonstrate that the silicon atoms are doped into graphene lattice at a doping level of 2.7-4.5 at%. Electrical measurements based on a field effect transistor indicate that the band gap of graphene has been opened via silicon doping without a clear degradation in carrier mobility, and the work function of SiG, deduced from ultraviolet photoelectron spectroscopy, was 0.13-0.25 eV larger than that of graphene. Moreover, when compared with the graphene/GaAs heterostructure, SiG/GaAs exhibits an enhanced performance. The performance of 3.4% silicon doped SiG/GaAs solar cell has been improved by 33.7% on average, which was attributed to the increased barrier height and improved interface quality. Our results suggest that silicon doping can effectively engineer the band gap of monolayered graphene and SiG has great potential in optoelectronic device applications.

12.
Eur Rev Med Pharmacol Sci ; 19(20): 3940-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26531283

RESUMO

OBJECTIVE: To discuss the protective mechanisms of atorvastatin treatment for isoproterenol (ISO)-induced chronic heart failure. MATERIALS AND METHODS: The rats were randomly divided into three groups: normal group (n = 15, age-matched normal adult rats), ISO group (n = 11, ISO induced heart failure) and atorvastatin group (n = 14, ISO induced lesion but received atorvastatin treatment). The cardiac function was evaluated by echocardiography and hemodynamics analysis. In addition, the Rac1 activity in the myocardium and the expression levels of Rac1, p47phox and p67phox were measured by RT-PCR and western blot. RESULTS: Rats in ISO group developed into heart failure with decreased cardiac function. The Rac1, p47phox and p67phox mRNA expressions and ROS release were increased in ISO group. Atorvastatin treatment improved cardiac function of rats with isoproterenol-induced chronic heart failure and decreased the Rac1, p47phox and p67phox mRNA expressions. Also, membrane protein expression of Rac1 and ROS release decreased significantly. CONCLUSIONS: Atorvastatin may improve cardiac function of rats with heart failure via inhibiting Rac1/P47phox/P67phox-mediated ROS release.


Assuntos
Atorvastatina/uso terapêutico , Insuficiência Cardíaca/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Atorvastatina/farmacologia , Doença Crônica , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Humanos , Masculino , NADH NADPH Oxirredutases/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
13.
Science ; 343(6172): 752-4, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24531966

RESUMO

Graphene-based materials can have well-defined nanometer pores and can exhibit low frictional water flow inside them, making their properties of interest for filtration and separation. We investigate permeation through micrometer-thick laminates prepared by means of vacuum filtration of graphene oxide suspensions. The laminates are vacuum-tight in the dry state but, if immersed in water, act as molecular sieves, blocking all solutes with hydrated radii larger than 4.5 angstroms. Smaller ions permeate through the membranes at rates thousands of times faster than what is expected for simple diffusion. We believe that this behavior is caused by a network of nanocapillaries that open up in the hydrated state and accept only species that fit in. The anomalously fast permeation is attributed to a capillary-like high pressure acting on ions inside graphene capillaries.

14.
Science ; 335(6067): 442-4, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22282806

RESUMO

Permeation through nanometer pores is important in the design of materials for filtration and separation techniques and because of unusual fundamental behavior arising at the molecular scale. We found that submicrometer-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors, and gases, including helium, but these membranes allow unimpeded permeation of water (H(2)O permeates through the membranes at least 10(10) times faster than He). We attribute these seemingly incompatible observations to a low-friction flow of a monolayer of water through two-dimensional capillaries formed by closely spaced graphene sheets. Diffusion of other molecules is blocked by reversible narrowing of the capillaries in low humidity and/or by their clogging with water.

15.
Se Pu ; 19(3): 230-2, 2001 May.
Artigo em Zh | MEDLINE | ID: mdl-12541803

RESUMO

A rapid assay method for catechol-O-methyltransferase (COMT) activity in human erythrocyts by high performance liquid chromatography (HPLC) with UV detection was established. Enzyme activity was determined from erythrocyte lysates using S-adenosyl-L-methionine (SAM) as methyl donor and 3, 4-dihydroxybenzoic acid (DBA) as substrate. The 3-O-methylated reaction products were measured by HPLC with UV detection. The linear range of COMT was from 1 U/mL to 60 U/mL with an average RSD < 10%, and the detection limit was 0.5 U/mL(S/N > or = 5).


Assuntos
Catecol O-Metiltransferase/sangue , Eritrócitos/enzimologia , Adolescente , Adulto , Cromatografia Líquida de Alta Pressão , Depressão/enzimologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA