Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Divers ; 45(6): 621-629, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38197011

RESUMO

The cortex (i.e., absorptive tissue) and stele (transportive vascular tissue) are fundamental to the function of plant roots. Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology, physiology, and plant responses to global environmental changes. In this review, we first compile a large data set on anatomical traits in absorptive roots, including cortex thickness and stele radius, across 698 observations and 512 species. Using this data set, we reveal a common root allometry in absorptive root structures, i.e., cortex thickness increases much faster than stele radius with increasing root diameter (hereafter, root allometry). Root allometry is further validated within and across plant growth forms (woody, grass, and liana species), mycorrhiza types (arbuscular mycorrhiza, ectomycorrhiza, and orchid mycorrhizas), phylogenetic gradients (from ferns to Orchidaceae), and environmental change scenarios (e.g., elevation of atmospheric CO2 concentration and nitrogen fertilization). These findings indicate that root allometry is common in plants. Importantly, root allometry varies greatly across species. We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms. We further discuss ecological and evolutionary implications of root allometry. Finally, we propose several important research directions that should be pursued regarding root allometry.

2.
Chemosphere ; 286(Pt 2): 131714, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426125

RESUMO

In this study, a field-scale and pot experiment were performed to evaluate the remedial efficiency of Cd contaminated soil by tobacco and explore rhizosphere micro-characteristics under different cadmium levels, respectively. The results indicated that tobacco could remove 12.9 % of Cd from soil within a short growing period of 80 d. The pot experiment revealed that tobacco could tolerate soil Cd concentrations up to 5.8 mg kg-1 and bioaccumulate 68.1 and 40.8 mg kg-1 Cd in shoots and roots, respectively. The high Cd bioaccumulation in tobacco might be attributed to strong acidification in the rhizosphere soil and the increase in Cd bioavailability. Rhizobacteria did not appear to be involved in Cd mobilization. In contrast, tobacco tended to enrich sulfate-reducing bacteria (such as Desulfarculaceae) under high Cd treatment (5.8 mg kg-1) but enrich plant growth-promoting bacteria (such as Bacillus, Dyadobacter, Virgibacillus and Lysobacter) to improve growth under low Cd treatment (0.2 mg kg-1), suggesting that tobacco employed different microbes for responding to Cd stress. Our results demonstrate the advantages of using tobacco for bioremediating Cd contaminated soil and clarify the rhizosphere mechanisms underlying Cd mobilization and tolerance.


Assuntos
Rizosfera , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas/química , Solo , Poluentes do Solo/análise , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA