Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Immunol ; 23(11): 1536-1550, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36271147

RESUMO

CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Antígenos CD40/genética , Apresentação de Antígeno , Células Dendríticas , Camundongos Endogâmicos C57BL
2.
Cell ; 179(5): 1144-1159.e15, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31708126

RESUMO

The colonic epithelium can undergo multiple rounds of damage and repair, often in response to excessive inflammation. The responsive stem cell that mediates this process is unclear, in part because of a lack of in vitro models that recapitulate key epithelial changes that occur in vivo during damage and repair. Here, we identify a Hopx+ colitis-associated regenerative stem cell (CARSC) population that functionally contributes to mucosal repair in mouse models of colitis. Hopx+ CARSCs, enriched for fetal-like markers, transiently arose from hypertrophic crypts known to facilitate regeneration. Importantly, we established a long-term, self-organizing two-dimensional (2D) epithelial monolayer system to model the regenerative properties and responses of Hopx+ CARSCs. This system can reenact the "homeostasis-injury-regeneration" cycles of epithelial alterations that occur in vivo. Using this system, we found that hypoxia and endoplasmic reticulum stress, insults commonly present in inflammatory bowel diseases, mediated the cyclic switch of cellular status in this process.


Assuntos
Técnicas de Cultura de Células/métodos , Colo/patologia , Células-Tronco/patologia , Células 3T3 , Animais , Colite/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Homeodomínio/metabolismo , Camundongos , Modelos Biológicos , Oxigênio/farmacologia , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
3.
Nat Immunol ; 20(9): 1161-1173, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406378

RESUMO

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.


Assuntos
Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/metabolismo , Macrófagos/citologia , Monócitos/citologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Células-Tronco/citologia , Células Tumorais Cultivadas
4.
Immunity ; 55(7): 1200-1215.e6, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35637103

RESUMO

Soon after activation, CD4+ T cells are segregated into BCL6+ follicular helper (Tfh) and BCL6- effector (Teff) T cells. Here, we explored how these subsets are maintained during chronic antigen stimulation using the mouse chronic LCMV infection model. Using single cell-transcriptomic and epigenomic analyses, we identified a population of PD-1+ TCF-1+ CD4+ T cells with memory-like features. TCR clonal tracing and adoptive transfer experiments demonstrated that these cells have self-renewal capacity and continue to give rise to both Teff and Tfh cells, thus functioning as progenitor cells. Conditional deletion experiments showed Bcl6-dependent development of these progenitors, which were essential for sustaining antigen-specific CD4+ T cell responses to chronic infection. An analogous CD4+ T cell population developed in draining lymph nodes in response to tumors. Our study reveals the heterogeneity and plasticity of CD4+ T cells during persistent antigen exposure and highlights their population dynamics through a stable, bipotent intermediate state.


Assuntos
Antígenos , Linfócitos T Auxiliares-Indutores , Transferência Adotiva , Animais , Diferenciação Celular , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Células-Tronco
5.
Nature ; 607(7917): 142-148, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732734

RESUMO

The divergence of the common dendritic cell progenitor1-3 (CDP) into the conventional type 1 and type 2 dendritic cell (cDC1 and cDC2, respectively) lineages4,5 is poorly understood. Some transcription factors act in the commitment of already specified progenitors-such as BATF3, which stabilizes Irf8 autoactivation at the +32 kb Irf8 enhancer4,6-but the mechanisms controlling the initial divergence of CDPs remain unknown. Here we report the transcriptional basis of CDP divergence and describe the first requirements for pre-cDC2 specification. Genetic epistasis analysis7 suggested that Nfil3 acts upstream of Id2, Batf3 and Zeb2 in cDC1 development but did not reveal its mechanism or targets. Analysis of newly generated NFIL3 reporter mice showed extremely transient NFIL3 expression during cDC1 specification. CUT&RUN and chromatin immunoprecipitation followed by sequencing identified endogenous NFIL3 binding in the -165 kb Zeb2 enhancer8 at three sites that also bind the CCAAT-enhancer-binding proteins C/EBPα and C/EBPß. In vivo mutational analysis using CRISPR-Cas9 targeting showed that these NFIL3-C/EBP sites are functionally redundant, with C/EBPs supporting and NFIL3 repressing Zeb2 expression at these sites. A triple mutation of all three NFIL3-C/EBP sites ablated Zeb2 expression in myeloid, but not lymphoid progenitors, causing the complete loss of pre-cDC2 specification and mature cDC2 development in vivo. These mice did not generate T helper 2 (TH2) cell responses against Heligmosomoides polygyrus infection, consistent with cDC2 supporting TH2 responses to helminths9-11. Thus, CDP divergence into cDC1 or cDC2 is controlled by competition between NFIL3 and C/EBPs at the -165 kb Zeb2 enhancer.


Assuntos
Diferenciação Celular , Células Dendríticas , Elementos Facilitadores Genéticos , Mutação , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Células Dendríticas/classificação , Células Dendríticas/citologia , Células Dendríticas/patologia , Elementos Facilitadores Genéticos/genética , Epistasia Genética , Proteína 2 Inibidora de Diferenciação , Linfócitos/citologia , Camundongos , Células Mieloides/citologia , Nematospiroides dubius/imunologia , Proteínas Repressoras , Células Th2/citologia , Células Th2/imunologia , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
6.
Nature ; 584(7822): 624-629, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788723

RESUMO

Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Neoplasias/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 120(13): e2219956120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940342

RESUMO

The events that initiate autoimmune diabetes in nonobese diabetic (NOD) mice remain poorly understood. CD4+ and CD8+ T cells are both required to develop disease, but their relative roles in initiating disease are unclear. To test whether CD4+ T cell infiltration into islets requires damage to ß cells induced by autoreactive CD8+ T cells, we inactivated Wdfy4 in nonobese diabetic (NOD) mice (NOD.Wdfy4-/--) using CRISPR/Cas9 targeting to eliminate cross-presentation by type 1 conventional dendritic cells (cDC1s). Similar to C57BL/6 Wdfy4-/- mice, cDC1 in NOD.Wdfy4-/- mice are unable to cross-present cell-associated antigens to prime CD8+ T cells, while cDC1 from heterozygous NOD.Wdfy4+/- mice cross-present normally. Further, NOD.Wdfy4-/- mice fail to develop diabetes while heterozygous NOD.Wdfy4+/- mice develop diabetes similarly to wild-type NOD mice. NOD.Wdfy4-/- mice remain capable of processing and presenting major histocompatibility complex class II (MHC-II)-restricted autoantigens and can activate ß cell-specific CD4+ T cells in lymph nodes. However, disease in these mice does not progress beyond peri-islet inflammation. These results indicate that the priming of autoreactive CD8+ T cells in NOD mice requires cross-presentation by cDC1. Further, autoreactive CD8+ T cells appear to be required not only to develop diabetes, but to recruit autoreactive CD4+ T cells into islets of NOD mice, perhaps in response to progressive ß cell damage.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Camundongos Endogâmicos NOD , Linfócitos T CD8-Positivos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Classe II
8.
Eur J Immunol ; 53(9): e2250201, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424050

RESUMO

In vitro culture of bone marrow (BM) with Fms-like tyrosine kinase 3 ligand (Flt3L) is widely used to study development and function of type 1 conventional dendritic cells (cDC1). Hematopoietic stem cells (HSCs) and many progenitor populations that possess cDC1 potential in vivo do not express Flt3 and thus may not contribute to Flt3L-mediated cDC1 production in vitro. Here, we present a KitL/Flt3L protocol that recruits such HSCs and progenitors into the production of cDC1. Kit ligand (KitL) is used to expand HSCs and early progenitors lacking Flt3 expression into later stage where Flt3 is expressed. Following this initial KitL phase, a second Flt3L phase is used to support the final production of DCs. With this two-stage culture, we achieved approximately tenfold increased production of both cDC1 and cDC2 compared to Flt3L culture. cDC1 derived from this culture are similar to in vivo cDC1 in their dependence on IRF8, ability to produce IL-12, and induction of tumor regression in cDC1-deficient tumor-bearing mice. This KitL/Flt3L system for cDC1 production will be useful in further analysis of cDC1 that rely on in vitro generation from BM.


Assuntos
Células-Tronco Hematopoéticas , Fator de Células-Tronco , Camundongos , Animais , Medula Óssea , Células da Medula Óssea , Células Dendríticas
9.
Immunity ; 43(5): 884-95, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26546282

RESUMO

Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.


Assuntos
Tolerância Central/genética , Tolerância Central/imunologia , Citidina Desaminase/genética , Ativação Linfocitária/imunologia , Células Precursoras de Linfócitos B/imunologia , Adolescente , Adulto , Idoso , Animais , Apoptose/genética , Apoptose/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Feminino , Genes de Imunoglobulinas/genética , Genes de Imunoglobulinas/imunologia , Humanos , Ativação Linfocitária/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Recombinação Genética/genética , Recombinação Genética/imunologia , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Adulto Jovem
10.
J Immunol ; 207(1): 125-132, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34135058

RESUMO

The transcriptional repressor Bcl6 has been reported as required for development of a subset of classical dendritic cell (cDCs) called cDC1, which is responsible for cross-presentation. However, mechanisms and in vivo functional analysis have been lacking. We generated a system for conditional deletion of Bcl6 in mouse cDCs. We confirmed the reported in vitro requirement for Bcl6 in cDC1 development and the general role for Bcl6 in cDC development in competitive settings. However, deletion of Bcl6 did not abrogate the in vivo development of cDC1. Instead, Bcl6 deficiency caused only a selective reduction in CD8α expression by cDC1 without affecting XCR1 or CD24 expression. Normal cDC1 development was confirmed in Bcl6cKO mice by development of XCR1+ Zbtb46-GFP+ cDC1 by rejection of syngeneic tumors and by priming of tumor-specific CD8 T cells. In summary, Bcl6 regulates a subset of cDC1-specific markers and is required in vitro but not in vivo for cDC1 development.


Assuntos
Células Dendríticas , Neoplasias , Animais , Linfócitos T CD8-Positivos , Apresentação Cruzada , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética
11.
Proc Natl Acad Sci U S A ; 112(10): 3056-61, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713392

RESUMO

Dendritic cells (DCs) are the primary leukocytes responsible for priming T cells. To find and activate naïve T cells, DCs must migrate to lymph nodes, yet the cellular programs responsible for this key step remain unclear. DC migration to lymph nodes and the subsequent T-cell response are disrupted in a mouse we recently described lacking the NOD-like receptor NLRP10 (NLR family, pyrin domain containing 10); however, the mechanism by which this pattern recognition receptor governs DC migration remained unknown. Using a proteomic approach, we discovered that DCs from Nlrp10 knockout mice lack the guanine nucleotide exchange factor DOCK8 (dedicator of cytokinesis 8), which regulates cytoskeleton dynamics in multiple leukocyte populations; in humans, loss-of-function mutations in Dock8 result in severe immunodeficiency. Surprisingly, Nlrp10 knockout mice crossed to other backgrounds had normal DOCK8 expression. This suggested that the original Nlrp10 knockout strain harbored an unexpected mutation in Dock8, which was confirmed using whole-exome sequencing. Consistent with our original report, NLRP3 inflammasome activation remained unaltered in NLRP10-deficient DCs even after restoring DOCK8 function; however, these DCs recovered the ability to migrate. Isolated loss of DOCK8 via targeted deletion confirmed its absolute requirement for DC migration. Because mutations in Dock genes have been discovered in other mouse lines, we analyzed the diversity of Dock8 across different murine strains and found that C3H/HeJ mice also harbor a Dock8 mutation that partially impairs DC migration. We conclude that DOCK8 is an important regulator of DC migration during an immune response and is prone to mutations that disrupt its crucial function.


Assuntos
Proteínas de Transporte/fisiologia , Movimento Celular/genética , Células Dendríticas/imunologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Mutação Puntual
12.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37432392

RESUMO

Cytokines produced in association with tumors can impair antitumor immune responses by reducing the abundance of type 1 conventional dendritic cells (cDC1), but the mechanism remains unclear. Here, we show that tumor-derived IL-6 generally reduces cDC development but selectively impairs cDC1 development in both murine and human systems through the induction of C/EBPß in the common dendritic cell progenitor (CDP). C/EBPß and NFIL3 compete for binding to sites in the Zeb2 -165 kb enhancer and support or repress Zeb2 expression, respectively. At homeostasis, pre-cDC1 specification occurs upon Nfil3 induction and consequent Zeb2 suppression. However, IL-6 strongly induces C/EBPß expression in CDPs. Importantly, the ability of IL-6 to impair cDC development is dependent on the presence of C/EBPß binding sites in the Zeb2 -165 kb enhancer, as this effect is lost in Δ1+2+3 mutant mice in which these binding sites are mutated. These results explain how tumor-associated IL-6 suppresses cDC1 development and suggest therapeutic approaches preventing abnormal C/EBPß induction in CDPs may help reestablish cDC1 development to enhance antitumor immunity.


Assuntos
Citocinas , Interleucina-6 , Humanos , Animais , Camundongos , Sítios de Ligação , Células Dendríticas , Homeostase
13.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35543702

RESUMO

Last year was the 10th anniversary of Ralph Steinman's Nobel Prize awarded for his discovery of dendritic cells (DCs), while next year brings the 50th anniversary of that discovery. Current models of anti-viral and anti-tumor immunity rest solidly on Steinman's discovery of DCs, but also rely on two seemingly unrelated phenomena, also reported in the mid-1970s: the discoveries of "help" for cytolytic T cell responses by Cantor and Boyse in 1974 and "cross-priming" by Bevan in 1976. Decades of subsequent work, controversy, and conceptual changes have gradually merged these three discoveries into current models of cell-mediated immunity against viruses and tumors.


Assuntos
Células Dendríticas , Neoplasias , Apresentação Cruzada , Humanos , Prêmio Nobel , Linfócitos T Citotóxicos
14.
Cancer Immunol Res ; 10(8): 920-931, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35648641

RESUMO

As a cell-based cancer vaccine, dendritic cells (DC), derived from peripheral blood monocytes or bone marrow (BM) treated with GM-CSF (GMDC), were initially thought to induce antitumor immunity by presenting tumor antigens directly to host T cells. Subsequent work revealed that GMDCs do not directly prime tumor-specific T cells, but must transfer their antigens to host DCs. This reduces their advantage over strictly antigen-based strategies proposed as cancer vaccines. Type 1 conventional DCs (cDC1) have been reported to be superior to GMDCs as a cancer vaccine, but whether they act by transferring antigens to host DCs is unknown. To test this, we compared antitumor responses induced by GMDCs and cDC1 in Irf8 +32-/- mice, which lack endogenous cDC1 and cannot reject immunogenic fibrosarcomas. Both GMDCs and cDC1 could cross-present cell-associated antigens to CD8+ T cells in vitro. However, injection of GMDCs into tumors in Irf8 +32-/- mice did not induce antitumor immunity, consistent with their reported dependence on host cDC1. In contrast, injection of cDC1s into tumors in Irf8 +32-/- mice resulted in their migration to tumor-draining lymph nodes, activation of tumor-specific CD8+ T cells, and rejection of the tumors. Tumor rejection did not require the in vitro loading of cDC1 with antigens, indicating that acquisition of antigens in vivo is sufficient to induce antitumor responses. Finally, cDC1 vaccination showed abscopal effects, with rejection of untreated tumors growing concurrently on the opposite flank. These results suggest that cDC1 may be a useful future avenue to explore for antitumor therapy. See related Spotlight by Hubert et al., p. 918.


Assuntos
Vacinas Anticâncer , Fibrossarcoma , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Fatores Reguladores de Interferon , Camundongos
15.
Sci Immunol ; 2(18)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196450

RESUMO

T follicular helper (Tfh) cells are a subset of CD4+ T cells that promote antibody production during vaccination. Conventional dendritic cells (cDCs) efficiently prime Tfh cells; however, conclusions regarding which cDC instructs Tfh cell differentiation have differed between recent studies. We found that these discrepancies might exist because of the unusual sites used for immunization in murine models, which differentially bias which DC subsets access antigen. We used intranasal immunization as a physiologically relevant route of exposure that delivers antigen to all tissue DC subsets. Using a combination of mice in which the function of individual DC subsets is impaired and different antigen formulations, we determined that CD11b+ migratory type 2 cDCs (cDC2s) are necessary and sufficient for Tfh induction. DC-specific deletion of the guanine nucleotide exchange factor DOCK8 resulted in an isolated loss of CD11b+ cDC2, but not CD103+ cDC1, migration to lung-draining lymph nodes. Impaired cDC2 migration or development in DC-specific Dock8 or Irf4 knockout mice, respectively, led to reduced Tfh cell priming, whereas loss of CD103+ cDC1s in Batf3-/- mice did not. Loss of cDC2-dependent Tfh cell priming impaired antibody-mediated protection from live influenza virus challenge. We show that migratory cDC2s uniquely carry antigen into the subanatomic regions of the lymph node where Tfh cell priming occurs-the T-B border. This work identifies the DC subset responsible for Tfh cell-dependent antibody responses, particularly when antigen dose is limiting or is encountered at a mucosal site, which could ultimately inform the formulation and delivery of vaccines.


Assuntos
Anticorpos/imunologia , Antígeno CD11b/imunologia , Células Dendríticas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Proliferação de Células , Células Dendríticas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Repressoras/deficiência , Proteínas Repressoras/imunologia , Linfócitos T Auxiliares-Indutores/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA