Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioorg Med Chem ; 69: 116896, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777270

RESUMO

There is a dearth of tuberculosis (TB) drug development activity as current therapeutic treatments are inadequate due to the appearance of drug-resistant TB. The enzyme UDP-galactopyranose mutase (UGM) is involved in the biosynthesis of galactan which is essential for cell wall integrity and bacterial viability. Its inhibition has thus been featured as profitable strategy for anti-TB drug discovery. In this study, we report on the synthesis of amides derived from rosmarinic acid, their inhibitory effect towards purified UGM using three distinct biochemical assays: FP, HPLC and SPR. The rosmarinic amides generally showed a significantly higher affinity for UGM than the corresponding rosmarinic ester. In particular, compound 5h displayed interesting binding affinity values (Kd = 58 ± 7, 63 ± 9 µM towards KpUGM and MtUGM respectively). Furthermore, a new UGM SPR assay was established and confirmed that 5h binds to UGM with a dissociation constant of 104.8 ± 6.5 µM. Collectively, this study validates the amide bioisosteric strategy which has been successfully implemented to develop UGM inhibitors from rosmarinic acid, providing a substantial basis for further design of novel UGM inhibitors and anti-mycobacterial agents.


Assuntos
Transferases Intramoleculares , Mycobacterium tuberculosis , Amidas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Inibidores Enzimáticos/química
2.
Org Biomol Chem ; 19(8): 1818-1826, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33565547

RESUMO

An in situ screening assay for UDP-galactopyranose mutase (UGM, an essential enzyme of M. tuberculosis cell wall biosynthesis) has been developed to discover novel UGM inhibitors. The approach is based on the amide-forming reaction of an amino acid core with various cinnamic acids, followed by a direct fluorescence polarization assay to identify the best UGM binders without isolation and purification of the screened ligands. This assay allows us to perform one-pot high-throughput synthesis and screening of enzyme inhibitors in a 384-well plate format. UGM ligands were successfully identified by this technology and their inhibition levels were established from pure synthetic compounds in vitro and in a whole cell antibacterial assay. This study provides a blueprint for designing enamide structures as new UGM inhibitors and anti-mycobacterial agents.


Assuntos
Aminoácidos/farmacologia , Antituberculosos/farmacologia , Cinamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Aminoácidos/síntese química , Aminoácidos/metabolismo , Antituberculosos/síntese química , Antituberculosos/metabolismo , Cinamatos/síntese química , Cinamatos/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Cinética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/enzimologia , Mycobacterium tuberculosis/enzimologia , Ligação Proteica
3.
J Hazard Mater ; 451: 131163, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893596

RESUMO

Arsenic contamination of groundwater harms the health of millions of people, especially As(III), which is extremely toxic and difficult to remediate. Herein, we fabricated a reliable La-Ce binary oxide-anchored carbon framework foam (La-Ce/CFF) adsorbent for As(III) deep removal. Its open 3D macroporous structure ensures fast adsorption kinetic. The incorporation of an appropriate amount of La could enhance the affinity of La-Ce/CFF for As(III). The adsorption capacity of La-Ce10/CFF reached 40.01 mg/g. It could purify the As(III) concentrations to drinking standard level (< 10 µg/L) over the pH ranges 3-10. It also possessed excellent anti-interference ability to the interfering ions. In addition, it worked reliably in the simulated As(III)-contaminated groundwater and river water. La-Ce10/CFF could easily apply in fixed-bed, and La-Ce10/CFF (1 g) packed column could purify 4580 BV (36.0 L) of As(III)-contaminated groundwater. When further considering the excellent reusability of La-Ce10/CFF, it is a promising and reliable adsorbent for As(III) deep remediation.

4.
Bioresour Technol ; 365: 128146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261111

RESUMO

Removing non-biodegradable Pb2+ and Cu2+ is the top priority in wastewater purification, while adsorption is a green technology to remove them. Herein, MgO-embedded granular hierarchical porous biochar (HP-MgO@BC) was fabricated by pyrolysis of porous Mg-infused chitosan beads. MgO nanoparticles were homogeneously embedded throughout the hierarchical porous biochar matrix in a high-density and accessible manner, thus providing a large number of easily accessible adsorption sites. Pb2+ and Cu2+ sorption capacities on HP-MgO@BC are 1044.8 and 811.2 mg/g at pH 5, respectively. It could effectively remove Pb2+ and Cu2+ across a broad pH range of 2-7, and show excellent adsorption efficiency in the presence of interfering cations. It also possessed excellent reusability. In the fixed-bed operation, 7880 BV (78.80 L) and 1610 BV (16.10 L) of synthetic Pb2+ and Cu2+ wastewater could be purified by HP-MgO@BC packed column, respectively. The adsorption mechanism involves mineral precipitation, ion exchange, and surface coordination.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Óxido de Magnésio , Cobre , Chumbo , Porosidade , Carvão Vegetal , Poluentes Químicos da Água/análise , Cinética
5.
Chem Commun (Camb) ; 53(77): 10632-10635, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28905050

RESUMO

In this study, we report a dynamic combinatorial approach along with highly efficient in situ screening to identify inhibitors of UDP-galactopyranose mutase (UGM), an essential enzyme involved in mycobacterial cell wall biosynthesis. These two technologies converged to the identification of a new UGM inhibitor chemotype. Importantly, the best molecule not only displayed high affinity for the target enzyme but also exhibited in vitro growth inhibition against whole Mycobacterium tuberculosis cells. The strategy described here provides an avenue to explore a novel inhibitor class for UGMs and paves the way for further pharmacological studies on tuberculosis treatment.


Assuntos
Parede Celular/metabolismo , Técnicas de Química Combinatória , Hidrazonas/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Antituberculosos/química , Antituberculosos/farmacologia , Hidrazonas/química , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos
6.
Biochem Res Int ; 2017: 6257240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713593

RESUMO

To get inside the properties of N,N-disubstituted Schiff bases, we synthesized three high-yielding benzaldehyde Schiff bases. We used the reaction between salicylaldehyde and different diamine compounds, including diamine, ethanediamine, and o-phenylenediamine, determining the structure of obtained molecules by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectroscopy. We thus evaluated the microbicidal and antitumor activity of these compounds, showing that salicylaldehyde-hydrazine hydrate Schiff base (compound 1a) significantly inhibited the growth of S. aureus; salicylaldehyde-o-phenylenediamine Schiff base (compound 1c) displayed a strong capability to inhibit the proliferation of leukemia cell lines K562 and HEL. Moreover, we observed that the antibacterial action of 1a might be associated with the regulation of the expression of key virulence genes in S. aureus. Compound 1c resulted in a strong apoptotic activity against leukemia cells, also affecting the cell cycle distribution. Overall, our novel N,N-disubstituted Schiff bases possess unique antibacterial or antitumor activities that exhibit the potent application prospect in prophylactic or therapeutic interventions, providing new insights for developing new antibacterial and anticancer chemical agents.

7.
Eur J Med Chem ; 97: 83-93, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25982329

RESUMO

There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data. The structure-microbicidal activity relationship of derivatives was investigated, and the antibacterial mechanisms were investigated by gene assays for the expression of functional genes in vitro using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The active compounds were selective for certain active groups. The polar substitution of the R2 group of the amino acids in the Schiff bases, affected the antibacterial activity against E. coli and S. aureus; specific active group at the R3 or R4 groups of the acylhydrazone Schiff bases could improve their inhibitory activity against these three tested organisms. The antibacterial mechanism of the active benzaldehyde Schiff bases appeared to regulate the expression of metabolism-associated genes in E. coli, hemolysis-associated genes in B. subtilis, and key virulence genes in S. aureus. Some benzaldehyde Schiff bases were bactericidal to all the three strains and appeared to regulate gene expression associated with metabolism, hemolysis, and virulence, in vitro. The newly designed benzaldehyde Schiff bases possessed unique antibacterial activity and might be potentially useful for prophylactic or therapeutic intervention of bacterial infections.


Assuntos
Anti-Infecciosos/síntese química , Benzaldeídos/síntese química , Bases de Schiff/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Benzaldeídos/química , Benzaldeídos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Estrutura Molecular , Bases de Schiff/química , Bases de Schiff/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA