Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130590, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490462

RESUMO

Comprehensive and dynamic studies of cellulose pyrolysis reaction mechanisms are crucial in designing experiments and processes with enhanced safety, efficiency, and sustainability. The details of the pyrolysis mechanism are not readily available from experiments but can be better described via molecular dynamics (MD) simulations. However, the large size of cellulose molecules challenges accurate ab initio MD simulations, while existing reactive force field parameters lack precision. In this work, precise ab initio deep learning potentials field (DPLF) are developed and applied in MD simulations to facilitate the study of cellulose pyrolysis mechanisms. The formation mechanism and production rate of both valuable and greenhouse products from cellulose at temperatures larger than 1073 K are comprehensively described. This study underscores the critical role of advanced simulation techniques, particularly DLPF, in achieving efficient and accurate understanding of cellulose pyrolysis mechanisms, thus promoting wider industrial applications.


Assuntos
Celulose , Aprendizado Profundo , Pirólise , Simulação de Dinâmica Molecular , Temperatura
2.
Pharmaceutics ; 15(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140112

RESUMO

Bioactive materials based on a nature-derived extracellular matrix (NECM) represent a category of biomedical devices with versatile therapeutic applications in the realms of tissue repair and engineering. With advancements in decellularization technique, the inherent bioactive molecules and the innate nano-structural and mechanical properties are preserved in three-dimensional scaffolds mainly composed of collagens. Techniques such as electrospinning, three-dimensional printing, and the intricate fabrication of hydrogels are developed to mimic the physical structures, biosignalling and mechanical cues of ECM. Until now, there has been no approach that can fully account for the multifaceted properties and diverse applications of NECM. In this review, we introduce the main proteins composing NECMs and explicate the importance of them when used as therapeutic devices in tissue repair. Nano-structural features of NECM and their applications regarding tissue repair are summarized. The origins, degradability, and mechanical property of and immune responses to NECM are also introduced. Furthermore, we review their applications, and clinical features thereof, in the repair of acute and chronic wounds, abdominal hernia, breast deformity, etc. Some typical marketed devices based on NECM, their indications, and clinical relevance are summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA