RESUMO
KEY MESSAGE: A SNP mutation in CmYGP gene encoding Golden2-like transcription factor is responsible for melon yellow-green plant trait. Chlorophylls are essential and beneficial substances for both plant and human health. Identifying the regulatory network of chlorophyll is necessary to improve the nutritional quality of fruits. At least six etiolation genes have been identified in different melon varieties, but none of them have been cloned, and the molecular mechanisms underlying chlorophyll synthesis and chloroplast development in melon remain unclear. Here, the NSL73046, a yellow-green plant (Cmygp) mutant, enabled the map-based cloning of the first etiolation gene in melon. CmYGP encodes a Golden2-like transcription factor. Spatiotemporal expression analyses confirmed the high CmYGP expression in all green tissues, particularly in young leaves and fruit peels. Virus-induced gene silencing and the development of near-isogenic line by marker-assisted selection further confirmed that downregulation of CmYGP can reduce chloroplast number and chlorophyll content, thereby resulting in yellow-green leaves and fruits in melon, and overexpression of CmYGP in tomatoes also led to dark-green leaves and fruits. RNA-seq analysis revealed that CmYGP greatly affected the expression of key genes associated with chloroplast development. Taken together, these findings demonstrated that CmYGP regulate chlorophyll synthesis and chloroplast development thus affect fruit development in melon. This study also offers a new strategy to enhance fruit quality in melon.
Assuntos
Cucurbitaceae , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Clorofila/genética , Regulação da Expressão Gênica de PlantasRESUMO
Fruit spine is an important trait in cucumber, affecting not only commercial quality, but also fruit smoothness, transportation and storage. Spine size is determined by a multi-cellular base. However, the molecular mechanism underlying the regulation of cucumber spine base remains largely unknown. Here, we report map-based cloning and characterization of a spine base size 1 (SBS1) gene, encoding a C2H2 zinc-finger transcription factor. Near-isogenic lines of cucumber were used to map, identify and quantify cucumber spine base size 1 (CsSBS1). Yeast-hybrid, bimolecular fluorescence complementation (BiFC), co-immunoprecipitation (Co-IP) and RNA-sequencing assays were used to explore the molecular mechanism of CsSBS1 in regulating spine base size development. CsSBS1 was specifically expressed in cucumber ovaries with particularly high expression in fruit spines. Overexpression of CsSBS1 resulted in large fruit spine base, while RNA-interference silencing of CsSBS1 inhibited the expansion of fruit spine base. Sequence analysis of natural cucumber accessions revealed that CsSBS1 was lost in small spine base accessions, resulting from a 4895 bp fragment deletion in CsSBS1 locus. CsSBS1 can form a trimeric complex with two positive regulators CsTTG1 and CsGL1 to regulate spine base development through ethylene signaling. A novel regulator network is proposed that the CsGL1/CsSBS1/CsTTG1 complex plays a significant role in regulating spine base formation and size, which offers a strategy for cucumber breeders to develop smooth fruit.
Assuntos
Cucumis sativus , Cucumis sativus/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tricomas/metabolismoRESUMO
The plant-specific IQ67 domain (IQD) is the largest class of calmodulin targets found in plants, and plays an important role in many biological processes, especially fruit development processes. However, the functional role of IQD proteins in the development of watermelon (Citrullus lanatus) shape remains unknown, as the IQD protein family in watermelon has not been systematically characterized. Herein, we elucidated the gene structures, chromosomal locations, evolutionary divergence, and functions of 35 IQD genes in the watermelon genome. The transcript profiles and quantitative real-time PCR analysis at different stages of fruit development showed that the ClIQD24 gene was highly expressed on 0 days after pollination. Furthermore, we found that the ectopic overexpression of ClIQD24 promoted tomato fruit elongation, thereby revealing the significance of ClIQD24 in the progression of watermelon shape. Our study will serve as a reference for further investigations on the molecular mechanisms underlying watermelon fruit shape formation.