Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257202

RESUMO

Photoelectrocatalytic (PEC) water decomposition provides a promising method for converting solar energy into green hydrogen energy. Indeed, significant advances and improvements have been made in various fundamental aspects for cutting-edge applications, such as water splitting and hydrogen production. However, the fairly low PEC efficiency of water decomposition by a semiconductor photoelectrode and photocorrosion seriously restrict the practical application of photoelectrochemistry. In this review, the mechanisms of PEC water decomposition are first introduced to provide a solid understanding of the PEC process and ensure that this review is accessible to a wide range of readers. Afterwards, notable achievements to date are outlined, and unique approaches involving promising semiconductor materials for efficient PEC hydrogen production, including metal oxide, sulfide, and graphite-phase carbon nitride, are described. Finally, four strategies which can effectively improve the hydrogen production rate-morphological control, doping, heterojunction, and surface modification-are discussed.

2.
Chemphyschem ; 20(20): 2668-2673, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31183939

RESUMO

Two wide-bandgap polymer donors containing an alkylthiophenyl substituted benzo[1,2-b : 4,5-b']dithiophene moiety, namely PTZPO and PTZPS, were designed and synthesized. Both polymers exhibit relatively wide optical bandgap of 1.95 V with similar absorption profiles. The polymer PTZPS with alkylthiophenyl substituted benzo[1,2-b : 4,5-b']dithiophene units showed enhanced light-harvesting capabilities, leading to improved short-circuit current densities. The PTZPS : ITIC film shows more appreciable film morphology and phase separation than the film composed of a blend of ITIC with alkoxyl substitutions containing copolymer PTZPO, which facilitates exciton dissociation and charge transport. The PTZPS : ITIC-based non-fullerene organic solar cells show clearly improved short-circuit current density and an impressively high power conversion efficiency of more than 11 %. These observations demonstrate the great promise of using PTZPS as electron-donating materials for high-performance non-fullerene organic solar cells.

3.
Nat Commun ; 11(1): 2871, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514001

RESUMO

The high binding energy and low diffusion length of photogenerated Frenkel excitons have long been viewed as major drawbacks of organic semiconductors. Therefore, bulk heterojunction structure has been widely adopted to assist exciton dissociation in organic photon-electron conversion devices. Here, we demonstrate that these intrinsically "poor" properties of Frenkel excitons, in fact, offer great opportunities to achieve self-filtering narrowband organic photodetectors with the help of a hierarchical device structure to intentionally manipulate the dissociation of Frenkel excitons. With this strategy, filter-free narrowband organic photodetector centered at 860 nm with full-width-at-half-maximum of around 50 nm, peak external quantum efficiency around 65% and peak specific detectivity over 1013 Jones are obtained, which is one the best performed no-gain type narrowband organic photodetectors ever reported and comparable to commercialized silicon photodetectors. This novel device structure along with its design concept may help create low cost and reliable narrowband organic photodetectors for practical applications.

4.
ACS Appl Mater Interfaces ; 11(15): 14208-14214, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30908001

RESUMO

To achieve high detectivity in all-polymer photodetectors (all-PPDs), a thick-film photoactive layer is favored because it can effectively suppress the dark current density. However, if the photoactive layer of the film is too thick, it leads to reduced responsivity owing to increased recombination loss. We developed high-performance all-PPDs by using a narrowband-gap p-type polymer NT40 and an n-type polymer poly{[ N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,5'-(2,2'bithiophene)} as the photoactive layer. The high charge carrier mobility of both copolymers enabled a photoactive layer thickness of 300 nm, leading to an ultralow dark current density of 4.85 × 10-10 A cm-2, a detectivity of 2.61 × 1013 Jones, a high responsivity of 0.33 A W-1 at 720 nm, and a bias of -0.1 V. The detectivity achieved >1013 Jones in a wide range from 360 to 850 nm, which is among the highest values so far reported for all-PPDs without extra gains. More importantly, the resultant all-PPDs exhibited a high working frequency over 10 kHz associated with a large linear dynamic range. These findings demonstrate great potential for practical applications of the all-PPDs developed in this work.

5.
Front Chem ; 6: 303, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30094231

RESUMO

Three small-molecule non-fullerene electron acceptors containing different numbers of fluorine atoms in their end groups were designed and synthesized. All three acceptors were found to exhibit relatively narrow band gaps with absorption profiles extending into the near-infrared region. The fluorinated analog exhibited enhanced light-harvesting capabilities, which led to improved short-circuit current densities. Moreover, fluorination improved the blend film morphology and led to desirable phase separation that facilitated exciton dissociation and charge transport. As a result of these advantages, organic solar cells based on the non-fullerene acceptors exhibited clearly improved short-circuit current densities and power conversion efficiencies compared with the device based on the non-fluorinated acceptor. These results suggest that fluorination can be an effective approach for the molecular design of non-fullerene acceptors with near-infrared absorption for organic solar cells.

6.
Chem Commun (Camb) ; 54(18): 2204-2207, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29308483

RESUMO

We designed and synthesized a series of n-type cross-conjugated polymers with a donor-π-bridge-acceptor structure (D-π-bridge-A) which can be used as electron-accepting materials to construct efficient all-polymer solar cells (all-PSCs). The two-dimensional architecture allows for the formation of cross-conjugation, which is favorable for charge carrier transport and light harvesting. Bulk-heterojunction all-PSCs based on these cross-conjugated electron-accepting polymers and PTB7-Th as the electron-donating polymer achieve an impressive power conversion efficiency of 5.55%. This cross-conjugated architecture provides a new molecular design strategy for n-type conjugated polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA