RESUMO
MOTIVATION: Precise prediction of cancer subtypes is of significant importance in cancer diagnosis and treatment. Disease etiology is complicated existing at different omics levels; hence integrative analysis provides a very effective way to improve our understanding of cancer. RESULTS: We propose a novel computational framework, named Deep Subspace Mutual Learning (DSML). DSML has the capability to simultaneously learn the subspace structures in each available omics data and in overall multi-omics data by adopting deep neural networks, which thereby facilitates the subtype's prediction via clustering on multi-level, single-level and partial-level omics data. Extensive experiments are performed in five different cancers on three levels of omics data from The Cancer Genome Atlas. The experimental analysis demonstrates that DSML delivers comparable or even better results than many state-of-the-art integrative methods. AVAILABILITY AND IMPLEMENTATION: An implementation and documentation of the DSML is publicly available at https://github.com/polytechnicXTT/Deep-Subspace-Mutual-Learning.git.
Assuntos
Neoplasias , Humanos , Neoplasias/genética , Redes Neurais de Computação , Genoma , Análise por Conglomerados , MultiômicaRESUMO
In recent years, the proportion of nosocomial infections caused by Acinetobacter baumannii (Ab) strains has increased significantly, and its resistance to antibiotics is rising. The resistance mechanisms of Ab are complex, which include the integron formation, inactivating or deactivating enzyme, outer membrane permeability, biofilm formation, drug exocytosis mechanism and so on. The biofilm formation by bacteria leads to high resistance and immune evasion ability. The aim of this study is to investigate the resistance and distribution patterns of Ab isolates, and the biofilm formation related genes in Ab isolates in our hospital.