Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.225
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595566

RESUMO

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Associadas à Mucosa , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/patologia , Macrófagos Associados a Tumor
2.
Cell ; 182(2): 317-328.e10, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526205

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive malignancy with its global incidence and mortality rate continuing to rise, although early detection and surveillance are suboptimal. We performed serological profiling of the viral infection history in 899 individuals from an NCI-UMD case-control study using a synthetic human virome, VirScan. We developed a viral exposure signature and validated the results in a longitudinal cohort with 173 at-risk patients who had long-term follow-up for HCC development. Our viral exposure signature significantly associated with HCC status among at-risk individuals in the validation cohort (area under the curve: 0.91 [95% CI 0.87-0.96] at baseline and 0.98 [95% CI 0.97-1] at diagnosis). The signature identified cancer patients prior to a clinical diagnosis and was superior to alpha-fetoprotein. In summary, we established a viral exposure signature that can predict HCC among at-risk patients prior to a clinical diagnosis, which may be useful in HCC surveillance.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Viroses/patologia , Adulto , Idoso , Área Sob a Curva , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Curva ROC , Fatores de Risco , Viroses/complicações , Adulto Jovem , alfa-Fetoproteínas/análise
3.
Nature ; 627(8004): 586-593, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355797

RESUMO

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Assuntos
Carcinoma Hepatocelular , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Hepáticas , Mutação , Sequenciamento Completo do Genoma , Humanos , Ácidos Aristolóquicos/metabolismo , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , China , Cromotripsia , Progressão da Doença , DNA Circular/genética , População do Leste Asiático/genética , Evolução Molecular , Genoma Humano/genética , Vírus da Hepatite B/genética , Mutação INDEL/genética , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Mutação/genética , Metástase Neoplásica/genética , Fases de Leitura Aberta/genética , Reprodutibilidade dos Testes
4.
Plant Cell ; 36(1): 158-173, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37804093

RESUMO

Induction of the pluripotent cell mass termed callus from detached organs or tissues is an initial step in typical in vitro plant regeneration, during which auxin-induced ectopic activation of root stem cell factors is required for subsequent de novo shoot regeneration. While Arabidopsis (Arabidopsis thaliana) AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 and their downstream transcription factors LATERAL ORGAN BOUNDARIES DOMAIN (LBD) are known to play key roles in directing callus formation, the molecules responsible for activation of root stem cell factors and thus establishment of callus pluripotency are unclear. Here, we identified Arabidopsis WRKY23 and BASIC HELIX-LOOP-HELIX 041 (bHLH041) as a transcriptional activator and repressor, respectively, of root stem cell factors during establishment of auxin-induced callus pluripotency. We show that auxin-induced WRKY23 downstream of ARF7 and ARF19 directly activates the transcription of PLETHORA 3 (PLT3) and PLT7 and thus that of the downstream genes PLT1, PLT2, and WUSCHEL-RELATED HOMEOBOX 5 (WOX5), while LBD-induced removal of bHLH041 derepresses the transcription of PLT1, PLT2, and WOX5. We provide evidence that transcriptional activation by WRKY23 and loss of bHLH041-imposed repression act synergistically in conferring shoot-regenerating capability on callus cells. Our findings thus disclose a transcriptional mechanism underlying auxin-induced cellular reprogramming, which, together with previous studies, outlines the molecular framework of auxin-induced pluripotent callus formation for in vitro plant regeneration programs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Ativação Transcricional , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas/genética , Raízes de Plantas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(19): e2219994120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126689

RESUMO

Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by ß-amyloid (Aß) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aß42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aß42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aß amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aß42-induced neuronal hyperactivity and neuronal degeneration.


Assuntos
Doença de Alzheimer , Ácido Glutâmico , Camundongos , Animais , Ácido Glutâmico/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo
6.
Mol Microbiol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922722

RESUMO

An arsenate reductase (Car1) from the Bacteroidetes species Rufibacter tibetensis 1351T was isolated from the Tibetan Plateau. The strain exhibits resistance to arsenite [As(III)] and arsenate [As(V)] and reduces As(V) to As(III). Here we shed light on the mechanism of enzymatic reduction by Car1. AlphaFold2 structure prediction, active site energy minimization, and steady-state kinetics of wild-type and mutant enzymes give insight into the catalytic mechanism. Car1 is structurally related to calcineurin-like metallophosphoesterases (MPPs). It functions as a binuclear metal hydrolase with limited phosphatase activity, particularly relying on the divalent metal Ni2+. As an As(V) reductase, it displays metal promiscuity and is coupled to the thioredoxin redox cycle, requiring the participation of two cysteine residues, Cys74 and Cys76. These findings suggest that Car1 evolved from a common ancestor of extant phosphatases by incorporating a redox function into an existing MPP catalytic site. Its proposed mechanism of arsenate reduction involves Cys74 initiating a nucleophilic attack on arsenate, leading to the formation of a covalent intermediate. Next, a nucleophilic attack of Cys76 leads to the release of As(III) and the formation of a surface-exposed Cys74-Cys76 disulfide, ready for reduction by thioredoxin.

7.
Hepatology ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607725

RESUMO

Heavy alcohol intake induces a wide spectrum of liver diseases ranging from steatosis, steatohepatitis, cirrhosis, and HCC. Although alcohol consumption is a well-known risk factor for the development, morbidity, and mortality of HCC globally, alcohol-associated hepatocellular carcinoma (A-HCC) is poorly characterized compared to viral hepatitis-associated HCC. Most A-HCCs develop after alcohol-associated cirrhosis (AC), but the direct carcinogenesis from ethanol and its metabolites to A-HCC remains obscure. The differences between A-HCC and HCCs caused by other etiologies have not been well investigated in terms of clinical prognosis, genetic or epigenetic landscape, molecular mechanisms, and heterogeneity. Moreover, there is a huge gap between basic research and clinical practice due to the lack of preclinical models of A-HCC. In the current review, we discuss the pathogenesis, heterogeneity, preclinical approaches, epigenetic, and genetic profiles of A-HCC, and discuss the current insights into and the prospects for future research on A-HCC. The potential effect of alcohol on cholangiocarcinoma and liver metastasis is also discussed.

8.
Hepatology ; 79(4): 768-779, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725716

RESUMO

BACKGROUND AND AIMS: The fitness and viability of a tumor ecosystem are influenced by the spatial organization of its cells. We aimed to study the structure, architecture, and cell-cell dynamics of the heterogeneous liver cancer tumor microenvironment using spatially resolved multiplexed imaging. APPROACH AND RESULTS: We performed co-detection by indexing multiplexed immunofluorescence imaging on 68 HCC biopsies from Thai patients [(Thailand Initiative in Genomics and Expression Research for Liver Cancer (TIGER-LC)] as a discovery cohort, and then validated the results in an additional 190 HCC biopsies from Chinese patients [Liver Cancer Institute (LCI)]. We segmented and annotated 117,270 and 465,632 cells from the TIGER-LC and LCI cohorts, respectively. We observed 4 patient groups of TIGER-LC (IC1, IC2, IC3, and IC4) with distinct tumor-immune cellular interaction patterns. In addition, patients from IC2 and IC4 had much better overall survival than those from IC1 and IC3. Noticeably, tumor and CD8 + T-cell interactions were strongly enriched in IC2, the group with the best patient outcomes. The close proximity between the tumor and CD8 + T cells was a strong predictor of patient outcome in both the TIGER-LC and the LCI cohorts. Bulk transcriptomic data from 51 of the 68 HCC cases were used to determine tumor-specific gene expression features of our classified subtypes. Moreover, we observed that the presence of immune spatial neighborhoods in HCC as a measure of overall immune infiltration is linked to better patient prognosis. CONCLUSIONS: Highly multiplexed imaging analysis of liver cancer reveals tumor-immune cellular heterogeneity within spatial contexts, such as tumor and CD8 + T-cell interactions, which may predict patient survival.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ecossistema , Prognóstico , Perfilação da Expressão Gênica , Microambiente Tumoral , Linfócitos T CD8-Positivos
9.
Nano Lett ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753313

RESUMO

Carrier multiplication (CM) in semiconductors, the process of absorbing a single high-energy photon to form two or more electron-hole pairs, offers great potential for the high-response detection of high-energy photons in the ultraviolet spectrum. However, compared to two-dimensional semiconductors, conventional bulk semiconductors not only face integration and flexibility bottlenecks but also exhibit inferior CM performance. To attain efficient CM for ultraviolet detection, we designed a two-terminal photodetector featuring a unilateral Schottky junction based on a two-dimensional γ-InSe/graphene heterostructure. Benefiting from a strong built-in electric field, the photogenerated high-energy electrons in γ-InSe, an ideal ultraviolet light-absorbing layer, can efficiently transfer to graphene without cooling. It results in efficient CM within the graphene, yielding an ultrahigh responsivity of 468 mA/W and a record-high external quantum efficiency of 161.2% when it is exposed to 360 nm light at zero bias. This work provides valuable insights into developing next-generation ultraviolet photodetectors with high performance and low-power consumption.

10.
Gut ; 73(3): 509-520, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-37770128

RESUMO

OBJECTIVE: Liver metastases are often resistant to immune checkpoint inhibitor therapy (ICI) and portend a worse prognosis compared with metastases to other locations. Regulatory T cells (Tregs) are one of several immunosuppressive cells implicated in ICI resistance of liver tumours, but the role played by Tregs residing within the liver surrounding a tumour is unknown. DESIGN: Flow cytometry and single-cell RNA sequencing were used to characterise hepatic Tregs before and after ICI therapy. RESULTS: We found that the murine liver houses a Treg population that, unlike those found in other organs, is both highly proliferative and apoptotic at baseline. On administration of αPD-1, αPD-L1 or αCTLA4, the liver Treg population doubled regardless of the presence of an intrahepatic tumour. Remarkably, this change was not due to the preferential expansion of the subpopulation of Tregs that express PD-1. Instead, a subpopulation of CD29+ (Itgb1, integrin ß1) Tregs, that were highly proliferative at baseline, doubled its size in response to αPD-1. Partial and full depletion of Tregs identified CD29+ Tregs as the prominent niche-filling subpopulation in the liver, and CD29+ Tregs demonstrated enhanced suppression in vitro when derived from the liver but not the spleen. We identified IL2 as a critical modulator of both CD29+ and CD29- hepatic Tregs, but expansion of the liver Treg population with αPD-1 driven by CD29+ Tregs was in part IL2-independent. CONCLUSION: We propose that CD29+ Tregs constitute a unique subpopulation of hepatic Tregs that are primed to respond to ICI agents and mediate resistance.


Assuntos
Neoplasias Hepáticas , Linfócitos T Reguladores , Animais , Camundongos , Interleucina-2 , Integrina beta1 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia
11.
Gut ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857989

RESUMO

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.

12.
Int J Cancer ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761410

RESUMO

Thailand is among countries with the highest global incidence and mortality rates of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). While viral hepatitis and liver fluke infections have been associated with HCC and iCCA, respectively, other environmental risk factors, overall risk factor commonality and combinatorial roles, and effects on survival have not been systematically examined. We conducted a TIGER-LC consortium-based population study covering all high-incidence areas of both malignancies across Thailand: 837 HCC, 1474 iCCA, and 1112 controls (2011-2019) were comprehensively queried on lifelong environmental exposures, lifestyle, and medical history. Multivariate logistic regression and Cox proportional hazards analyses were used to evaluate risk factors and associated survival patterns. Our models identified shared risk factors between HCC and iCCA, such as viral hepatitis infection, liver fluke infection, and diabetes, including novel and shared associations of agricultural pesticide exposure (OR range of 1.50; 95% CI: 1.06-2.11 to 2.91; 95% CI: 1.82-4.63) along with vulnerable sources of drinking water. Most patients had multiple risk factors, magnifying their risk considerably. Patients with lower risk levels had better survival in both HCC (HR 0.78; 95% CI: 0.64-0.96) and iCCA (HR 0.84; 95% CI: 0.70-0.99). Risk factor co-exposures and their common associations with HCC and iCCA in Thailand emphasize the importance for future prevention and control measures, especially in its large agricultural sector. The observed mortality patterns suggest ways to stratify patients for anticipated survivorship and develop plans to support medical care of longer-term survivors, including behavioral changes to reduce exposures.

13.
Curr Issues Mol Biol ; 46(5): 3906-3918, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785510

RESUMO

The high recurrence rate of cervical cancer is a leading cause of cancer deaths in women. 5-Fluorouracil (5-FU) is an antitumor drug used to treat many types of cancer, but its diminishing effectiveness and side effects limit its use. Norcantharidin (NCTD), a demethylated derivative of cantharidin, exhibits various biological activities. Here, we investigated whether NCTD could potentiate 5-FU to induce cervical cancer cell death. To assess the cell viability and synergistic effects of the drugs, cell counting kit-8 and colony formation assays were performed using HR-HPV-positive cervical cancer cell lines. Annexin V-FITC/PI staining and TUNEL assays were performed to confirm the induction of apoptosis. The synergistic effect of NCTD on the antitumor activity of 5-FU was analyzed using network pharmacology, molecular docking, and molecular dynamics simulations. Apoptosis-related proteins were examined using immunoblotting. The combination of NCTD and 5-FU was synergistic in cervical cancer cell lines. Network pharmacological analysis identified 10 common targets of NCTD and 5-FU for cervical cancer treatment. Molecular docking showed the strong binding affinity of both compounds with CA12, CASP9, and PTGS1. Molecular dynamics simulations showed that the complex system of both drugs with caspase-9 could be in a stable state. NCTD enhanced 5-FU-mediated cytotoxicity by activating apoptosis-related proteins. NCTD acts synergistically with 5-FU to inhibit cervical cancer cell proliferation. NCTD enhances 5-FU-induced apoptosis in cervical cancer cell lines via the caspase-dependent pathway.

14.
Small ; 20(24): e2307963, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38183362

RESUMO

pH-dependent peptide biomaterials hold tremendous potential for cell delivery and tissue engineering. However, identification of responsive self-assembling sequences with specified secondary structure remains a challenge. In this work, An experimental procedure based on the one-bead one-compound (OBOC) combinatorial library is developed to rapidly screen self-assembling ß-sheet peptides at neutral aqueous solution (pH 7.5) and disassemble at weak acidic condition (pH 6.5). Using the hydrophobic fluorescent molecule thioflavin T (ThT) as a probe, resin beads displaying self-assembling peptides show fluorescence under pH 7.5 due to the insertion of ThT into the hydrophobic domain, and are further cultured in pH 6.5 solution. The beads with extinguished fluorescence are selected. Three heptapeptides are identified that can self-assemble into nanofibers or nanoparticles at pH 7.5 and disassemble at pH 6.5. P1 (LVEFRHY) shows a rapid acid response and morphology transformation with pH modulation. Changes in the charges of histidine and hydrophobic phenyl motif of phenylalanine may play important roles in the formation of pH-responsive ß-sheet nanofiber. This high-throughput screening method provides an efficient way to identify pH-dependent ß-sheet self-assembling peptide and gain insights into structural design of such nanomaterials.


Assuntos
Peptídeos , Concentração de Íons de Hidrogênio , Peptídeos/química , Conformação Proteica em Folha beta , Ensaios de Triagem em Larga Escala/métodos , Nanofibras/química , Interações Hidrofóbicas e Hidrofílicas , Benzotiazóis/química
15.
Small ; : e2401439, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845528

RESUMO

Solid-state sodium metal batteries have been extensively investigated because of their potential to improve safety, cost-effectiveness, and energy density. The development of such batteries urgently required a solid-state electrolyte with fast Na-ion conduction and favorable interfacial compatibility. Herein, the progress on developing the NaB3H8 solid-state electrolytes is reported, which show a liquid-like ionic conductivity of 0.05 S cm-1 at 56 °C with an activation energy of 0.35 eV after an order-disorder phase transformation, matching or surpassing the best single-anion hydridoborate conductors investigated up to now. The steady polarization voltage and significantly decreased resistance are achieved in the symmetric Na/NaB3H8/Na cell, indicating the great electrochemical stability and favorable interfacial contact with the Na metal of NaB3H8. Furthermore, a Na/NaB3H8/TiS2 battery, the first high-rate (up to 1 C) solid-state sodium metal battery using the single-anion hydridoborate electrolyte, is demonstrated, which exhibits superior rate capability (168.2 mAh g-1 at 0.1 C and 141.2 mAh g-1 at 1 C) and long-term cycling stability (70.9% capacity retention at 1 C after 300 cycles) at 30 °C. This work may present a new possibility to solve the interfacial limitations and find a new group of solid-state electrolytes for high-performance sodium metal batteries.

16.
Hepatology ; 78(5): 1462-1477, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094826

RESUMO

BACKGROUND AND AIMS: Purines are building blocks for the cellular genome, and excessive purine nucleotides are seen in tumors. However, how purine metabolism is dysregulated in tumors, and impacting tumorigenesis remains elusive. APPROACH AND RESULTS: Transcriptomic and metabolomic analyses of purine biosynthesis and purine degradation pathways were performed in the tumor and associated nontumor liver tissues obtained from 62 patients with HCC, one of the most lethal cancers worldwide. We found that most genes in purine synthesis are upregulated, while genes in purine degradation are inhibited in HCC tumors. High purine anabolism is associated with unique somatic mutational signatures linked to patient prognosis. Mechanistically, we discover that increasing purine anabolism promotes epitranscriptomic dysregulation of DNA damage repairing (DDR) machinery through upregulating RNA N6-methyladenosine (m 6 A) modification. High purine anabolic HCC is sensitive to DDR-targeting agents but not to standard HCC treatments, correlating with the clinical outcomes in 5 independent HCC cohorts containing 724 patients. We further showed that high purine anabolism determines the sensitivity to DDR-targeting agents in 5 HCC cell lines in vitro and in vivo . CONCLUSIONS: Our results reveal a central role of purine anabolism in regulating DDR, which could be therapeutically exploited in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Purinas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Purinas/metabolismo
17.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870291

RESUMO

BACKGROUND AND AIMS: NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC. APPROACH AND RESULTS: We searched genetic alleles among the 24 most significant alleles associated with body fat distribution from a genome-wide association study of 344,369 individuals and validated the top allele in 3 independent cohorts of American and European patients (N=1380) with NAFLD/NASH/HCC. We identified an rs3747579-TT variant significantly associated with NASH-related HCC and demonstrated that rs3747579 is expression quantitative trait loci of a mitochondrial DnaJ Heat Shock Protein Family (Hsp40) Member A3 ( DNAJA3 ). We also found that rs3747579-TT and a previously identified PNPLA3 as a functional variant of NAFLD to have significant additional interactions with NASH/HCC risk. Patients with HCC with rs3747579-TT had a reduced expression of DNAJA3 and had an unfavorable prognosis. Furthermore, mice with hepatocyte-specific Dnaja3 depletion developed NASH-dependent HCC either spontaneously under a normal diet or enhanced by diethylnitrosamine. Dnaja3 -deficient mice developed NASH/HCC characterized by significant mitochondrial dysfunction, which was accompanied by excessive lipid accumulation and inflammatory responses. The molecular features of NASH/HCC in the Dnaja3 -deficient mice were closely associated with human NASH/HCC. CONCLUSIONS: We uncovered a genetic basis of DNAJA3 as a key player of NASH-related HCC.

18.
Plant Physiol ; 193(1): 448-465, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37217835

RESUMO

Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.


Assuntos
Malus , Prunus persica , Prunus , Prunus persica/genética , Prunus persica/metabolismo , Prunus/genética , Prunus/metabolismo , Histonas/metabolismo , Estudo de Associação Genômica Ampla , Malus/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética
19.
Cytokine ; 177: 156555, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387232

RESUMO

Interferon-alpha (IFN-α) is widely used in the clinical treatment of patients with chronic hepatitis B and hepatocellular carcinoma (HCC). However, high levels of CXCL8 are associated with resistance to IFN-α therapy and poorer prognosis in advanced cancers. In this study, we investigated whether IFN-α could directly induce the production of CXCL8 in HCC cells and whether CXCL8 could antagonize the antitumor activity of IFN-α. We found that IFN-α not only upregulated the expression of the inducible genes CXCL9, CXCL10, CXCL11 and PD-L1, but also significantly stimulated CXCL8 secretion in HCC cells. Mechanically, IFN-α induces CXCL8 expression by activating the AKT and JNK pathways. In addition, our results demonstrate that IFN-α exposure significantly increases the differentiation of HCC stem cells, but this effect is reversed by the addition of the CXCL8 receptor CXCR1/2 inhibitor Reparixin and STAT3 inhibitor Stattic. Besides, our study reveals that the cytokine CXCL8 secreted by IFN-α-induced HCC cells inhibits T-cell function. Conversely, inhibition of CXCL8 promotes TNF-α and IFN-γ secretion by T cells. Finally, liver cancer patients who received anti-PD-1/PD-L1 immunotherapy with high CXCL8 expression had a lower immunotherapy efficacy. Overall, our findings clarify that IFN-α triggers immunosuppression and cancer stem cell differentiation in hepatocellular carcinoma by upregulating CXCL8 secretion. This discovery provides a novel approach to enhance the effectiveness of HCC treatment in the future.


Assuntos
Carcinoma Hepatocelular , Interferon-alfa , Interleucina-8 , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Terapia de Imunossupressão , Interferon-alfa/farmacologia , Interferon gama/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Interleucina-8/metabolismo
20.
Arch Microbiol ; 206(4): 141, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441685

RESUMO

A strictly anaerobic, motile bacterium, designated as strain Ai-910T, was isolated from the sludge of an anaerobic digestion tank in China. Cells were Gram-stain-negative rods. Optimal growth was observed at 38 °C (growth range 25-42 °C), pH 8.5 (growth range 5.5-10.5), and under a NaCl concentration of 0.06% (w/v) (range 0-2.0%). Major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The respiratory quinone was MK-7. Using xylose as the growth substrate, succinate was produced as the fermentation product. Phylogenetic analysis based on the 16 S rRNA gene sequences indicated that strain Ai-910T formed a distinct phylogenetic lineage that reflects a new genus in the family Marinilabiliaceae, sharing high similarities to Alkaliflexus imshenetskii Z-7010T (92.78%), Alkalitalea saponilacus SC/BZ-SP2T (92.51%), and Geofilum rubicundum JAM-BA0501T (92.36%). Genomic similarity (average nucleotide identity and digital DNA-DNA hybridization) values between strain Ai-910T and its phylogenetic neighbors were below 65.27 and 16.90%, respectively, indicating that strain Ai-910T represented a novel species. The average amino acid identity between strain Ai-910T and other related members of the family Marinilabiliaceae were below 69.41%, supporting that strain Ai-910T was a member of a new genus within the family Marinilabiliaceae. Phylogenetic, genomic, and phenotypic analysis revealed that strain Ai-910T was distinguished from other phylogenetic relatives within the family Marinilabiliaceae. The genome size was 3.10 Mbp, and the DNA G + C content of the isolate was 42.8 mol%. Collectively, differences of the phenotypic and phylogenetic features of strain Ai-910T from its close relatives suggest that strain Ai-910T represented a novel species in a new genus of the family Marinilabiliaceae, for which the name Xiashengella succiniciproducens gen. nov., sp. nov. was proposed. The type strain of Xiashengella succiniciproducens is Ai-910T (= CGMCC 1.17893T = KCTC 25,304T).


Assuntos
Bactérias , Ácido Succínico , Anaerobiose , Filogenia , Succinatos , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA