Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(3): 567-581, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27374329

RESUMO

Insulin signaling regulates many facets of animal physiology. Its dysregulation causes diabetes and other metabolic disorders. The spindle checkpoint proteins MAD2 and BUBR1 prevent precocious chromosome segregation and suppress aneuploidy. The MAD2 inhibitory protein p31(comet) promotes checkpoint inactivation and timely chromosome segregation. Here, we show that whole-body p31(comet) knockout mice die soon after birth and have reduced hepatic glycogen. Liver-specific ablation of p31(comet) causes insulin resistance, hyperinsulinemia, glucose intolerance, and hyperglycemia and diminishes the plasma membrane localization of the insulin receptor (IR) in hepatocytes. MAD2 directly binds to IR and facilitates BUBR1-dependent recruitment of the clathrin adaptor AP2 to IR. p31(comet) blocks the MAD2-BUBR1 interaction and prevents spontaneous clathrin-mediated IR endocytosis. BUBR1 deficiency enhances insulin sensitivity in mice. BUBR1 depletion in hepatocytes or the expression of MAD2-binding-deficient IR suppresses the metabolic phenotypes of p31(comet) ablation. Our findings establish a major IR regulatory mechanism and link guardians of chromosome stability to nutrient metabolism.


Assuntos
Pontos de Checagem do Ciclo Celular , Insulina/metabolismo , Mitose , Transdução de Sinais , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Aneuploidia , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Segregação de Cromossomos , Clatrina/metabolismo , Endocitose , Células Hep G2 , Homeostase , Humanos , Resistência à Insulina , Fígado/metabolismo , Proteínas Mad2/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Insulina/metabolismo
2.
Nat Immunol ; 17(5): 495-504, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27019227

RESUMO

Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.


Assuntos
DNA Polimerase I/metabolismo , DNA/biossíntese , Interferon Tipo I/metabolismo , RNA/biossíntese , Sequência de Bases , Células Cultivadas , Citosol/metabolismo , DNA/genética , DNA Polimerase I/genética , Saúde da Família , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Masculino , Microscopia Confocal , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Transtornos da Pigmentação/genética , Transtornos da Pigmentação/metabolismo , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Circ Res ; 135(5): 596-613, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39056179

RESUMO

BACKGROUND: Macrophages are key players in obesity-associated cardiovascular diseases, which are marked by inflammatory and immune alterations. However, the pathophysiological mechanisms underlying macrophage's role in obesity-induced cardiac inflammation are incompletely understood. Our study aimed to identify the key macrophage population involved in obesity-induced cardiac dysfunction and investigate the molecular mechanism that contributes to the inflammatory response. METHODS: In this study, we used single-cell RNA-sequencing analysis of Cd45+CD11b+F4/80+ cardiac macrophages to explore the heterogeneity of cardiac macrophages. The CCR2+ (C-C chemokine receptor 2) macrophages were specifically removed by a dual recombinase approach, and the macrophage CCR2 was deleted to investigate their functions. We also performed cleavage under target and tagmentation analysis, chromatin immunoprecipitation-polymerase chain reaction, luciferase assay, and macrophage-specific lentivirus transfection to define the impact of lysozyme C in macrophages on obesity-induced inflammation. RESULTS: We find that the Ccr2 cluster undergoes a functional transition from homeostatic maintenance to proinflammation. Our data highlight specific changes in macrophage behavior during cardiac dysfunction under metabolic challenge. Consistently, inducible ablation of CCR2+CX3CR1+ macrophages or selective deletion of macrophage CCR2 prevents obesity-induced cardiac dysfunction. At the mechanistic level, we demonstrate that the obesity-induced functional shift of CCR2-expressing macrophages is mediated by the CCR2/activating transcription factor 3/lysozyme 1/NF-κB (nuclear factor kappa B) signaling. Finally, we uncover a noncanonical role for lysozyme 1 as a transcription activator, binding to the RelA promoter, driving NF-κB signaling, and strongly promoting inflammation and cardiac dysfunction in obesity. CONCLUSIONS: Our findings suggest that lysozyme 1 may represent a potential target for the diagnosis of obesity-induced inflammation and the treatment of obesity-induced heart disease.


Assuntos
Macrófagos , Muramidase , Obesidade , Receptores CCR2 , Animais , Obesidade/complicações , Obesidade/metabolismo , Macrófagos/metabolismo , Receptores CCR2/metabolismo , Receptores CCR2/genética , Camundongos , Muramidase/metabolismo , Muramidase/genética , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Transdução de Sinais , Inflamação/metabolismo , Inflamação/genética , Cardiopatias/etiologia , Cardiopatias/metabolismo , Cardiopatias/genética
4.
Nature ; 582(7811): 271-276, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499640

RESUMO

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Assuntos
Calcineurina/metabolismo , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Proteína Meis1/metabolismo , Miócitos Cardíacos/citologia , Animais , Animais Recém-Nascidos , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Coração/fisiologia , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Miocárdio/citologia , Ligação Proteica , Regeneração
5.
Circulation ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708635

RESUMO

BACKGROUND: Recent interest in understanding cardiomyocyte cell cycle has been driven by potential therapeutic applications in cardiomyopathy. However, despite recent advances, cardiomyocyte mitosis remains a poorly understood process. For example, it is unclear how sarcomeres are disassembled during mitosis to allow the abscission of daughter cardiomyocytes. METHODS: Here, we use a proteomics screen to identify adducin, an actin capping protein previously not studied in cardiomyocytes, as a regulator of sarcomere disassembly. We generated many adeno-associated viruses and cardiomyocyte-specific genetic gain-of-function models to examine the role of adducin in neonatal and adult cardiomyocytes in vitro and in vivo. RESULTS: We identify adducin as a regulator of sarcomere disassembly during mammalian cardiomyocyte mitosis. α/γ-adducins are selectively expressed in neonatal mitotic cardiomyocytes, and their levels decline precipitously thereafter. Cardiomyocyte-specific overexpression of various splice isoforms and phospho-isoforms of α-adducin in identified Thr445/Thr480 phosphorylation of a short isoform of α-adducin as a potent inducer of neonatal cardiomyocyte sarcomere disassembly. Concomitant overexpression of this α-adducin variant along with γ-adducin resulted in stabilization of the adducin complex and persistent sarcomere disassembly in adult mice, which is mediated by interaction with α-actinin. CONCLUSIONS: These results highlight an important mechanism for coordinating cytoskeletal morphological changes during cardiomyocyte mitosis.

6.
EMBO Rep ; 24(9): e56901, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37497756

RESUMO

Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors-ZAP, IFIT3, and IFIT1-together constitute the majority of interferon-mediated restriction of VEEV, while accounting for < 0.5% of the interferon-induced transcriptome. Together, our data suggest a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.


Assuntos
Vírus da Encefalite Equina Venezuelana , Vírus , Animais , Cavalos , Interferons , Linhagem Celular , Replicação Viral , Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/fisiologia
7.
Nature ; 568(7751): 249-253, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894749

RESUMO

The non-canonical NF-κB signalling cascade is essential for lymphoid organogenesis, B cell maturation, osteoclast differentiation, and inflammation in mammals1,2; dysfunction of this system is associated with human diseases, including immunological disorders and cancer3-6. Although expression of NF-κB-inducing kinase (NIK, also known as MAP3K14) is the rate-limiting step in non-canonical NF-κB pathway activation2,7, the mechanisms by which transcriptional responses are regulated remain largely unknown. Here we show that the sine oculis homeobox (SIX) homologue family transcription factors SIX1 and SIX2 are integral components of the non-canonical NF-κB signalling cascade. The developmentally silenced SIX proteins are reactivated in differentiated macrophages by NIK-mediated suppression of the ubiquitin proteasome pathway. Consequently, SIX1 and SIX2 target a subset of inflammatory gene promoters and directly inhibit the trans-activation function of the transcription factors RELA and RELB in a negative feedback circuit. In support of a physiologically pivotal role for SIX proteins in host immunity, a human SIX1 transgene suppressed inflammation and promoted the recovery of mice from endotoxic shock. In addition, SIX1 and SIX2 protected RAS/P53-driven non-small-cell lung carcinomas from inflammatory cell death induced by SMAC-mimetic chemotherapeutic agents (small-molecule activators of the non-canonical NF-κB pathway). Our findings identify a NIK-SIX signalling axis that fine-tunes inflammatory gene expression programs under both physiological and pathological conditions.


Assuntos
Proteínas de Homeodomínio/metabolismo , Inflamação/metabolismo , NF-kappa B/deficiência , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Fibroblastos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Proteínas de Homeodomínio/imunologia , Humanos , Inflamação/genética , Listeria monocytogenes/imunologia , Masculino , Camundongos , NF-kappa B/genética , Proteínas do Tecido Nervoso/imunologia , Regiões Promotoras Genéticas , Shigella flexneri/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/metabolismo , Quinase Induzida por NF-kappaB
8.
Cancer Immunol Immunother ; 73(8): 139, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833027

RESUMO

BACKGROUND: The significance of tumor-secreted cytokines in tumor development has gained substantial attention. Nevertheless, the precise role of tumor-related inflammatory cytokines in prostate cancer (PCa) remains ambiguous. OBJECTIVES: To gain deeper insights into the inflammatory response in the process of PCa. METHODS: A total of 233 cases were collected, including 80 cases of prostate hyperplasia as disease control, 65 cases of postoperative prostate cancer and 36 cases of prostate cancer as PCa group. Additionally, 52 patients undergoing physical examinations during the same period were collected as the healthy control. The levels of 12 inflammatory cytokines in peripheral blood samples were analyzed using flow cytometric bead array technology. The levels of total prostate-specific antigen (TPSA) and free prostate-specific antigen (FPSA) in peripheral blood samples were analyzed using electrochemiluminescence technology. RESULTS: Our findings revealed significant increases in serum IL-8 levels in PCa group compared to the healthy control group. Additionally, IL-6, IL-10, IFN-γ and IL-12p70 levels were markedly elevated in the PCa group compared to the disease control group (all p < 0.05). Conversely, the level of IL-4, TNF-α, IL-1ß, IL-17A and IFN-α were lower in the PCa group compared to those in control group. Following surgery, the concentration of IL-6 decreased; whereas, the concentrations of IL-4, TNF-α, IL-17A, IL-1ß, IL-12p70, and IFN-α increased, demonstrating significant differences (p < 0.05). The differential upregulation of IL-6 or downregulation of IL-17A in peripheral blood exhibited diagnostic efficacy in PCa patients. Moreover, we observed a significant increase in IL-17A levels, accompanied by decreased of IL-2, IL-4, IL-10, TNF-a, IFN-γ, IL-1ß, and IL-12P70 in patients with distant metastasis. CONCLUSION: The peripheral blood cytokines are closely associated with the occurrence and development of prostate cancer, especially the serum levels of IL-6 and IL-17A may be useful as potential predictors of PCa diagnosis.


Assuntos
Citocinas , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/sangue , Citocinas/sangue , Citocinas/metabolismo , Pessoa de Meia-Idade , Idoso , Diagnóstico Diferencial , Biomarcadores Tumorais/sangue , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/sangue
9.
Small ; 20(30): e2308335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38420895

RESUMO

Tumor-derived exosomes (TDEs) induced extracellular microenvironment has recently been validated to be critical for tumor progression and metastasis, however, remodeling it for oncotherapy still remains a major challenge due to difficulty in regulation of TDEs secretion. Herein, the supramolecular chiral nanofibers, composed of L/D-phenylalanine derivates (L/D-Phe) and linear hyaluronic acid (HA), are successfully employed to construct TDEs induced anti-tumor extracellular microenvironment. The left-handed L-Phe @HA nanofibers significantly inhibit TDEs secretion into extracellular microenvironment, which results in suppression of tumor proliferation and metastasis in vitro and vivo. Biological assays and theoretical modeling reveal that these results are mainly attributed to strong adsorption of the key exosomes transporters (Ras-related protein Rab-27A and synaptosome-associated protein 23) on left-handed L-Phe @HA nanofibers via enhanced stereoselective interaction, leading to degradation and phosphorylated dropping of exosomes transporters. Subsequently, transfer function of exosomes transporters is limited, which causes remarkable inhibition of TDEs secretion. These findings provide a promising novel insight of chiral functional materials to establish an anti-tumor extracellular microenvironment via regulation of TDEs secretion.


Assuntos
Exossomos , Nanofibras , Microambiente Tumoral , Nanofibras/química , Exossomos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Animais , Ácido Hialurônico/química , Proliferação de Células/efeitos dos fármacos
10.
BMC Cancer ; 24(1): 464, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616289

RESUMO

PURPOSE: In this study, we retrospectively investigated the prognostic role of pre-treatment neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) in esophageal squamous cell carcinoma patients (ESCC) treated with concurrent chemo-radiotherapy (CCRT). METHODS: We retrospectively analyzed the records of 338 patients with pathologically diagnosed esophageal squamous cell carcinoma that underwent concurrent chemo-radiotherapy from January 2013 to December 2017. Univariate and multivariate analyses were used to identify prognostic factors for progression free survival (PFS) and overall survival (OS). RESULTS: The result showed that the thresholds for NLR and PLR were 2.47 and 136.0 by receiver operating characteristic curve. High NLR and PLR were both associated with tumor length (P < 0.05). High NLR and PLR were significantly associated with poor PFS and OS. Multivariate analyses identified NLR, PLR and TNM stage were independent risk factors for PFS and OS. CONCLUSIONS: We show that the pre-treatment NLR and PLR may serve as prognostic indicators for esophageal squamous cell carcinoma treated with concurrent chemo-radiotherapy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Prognóstico , Carcinoma de Células Escamosas do Esôfago/terapia , Neoplasias Esofágicas/terapia , Neutrófilos , Estudos Retrospectivos , Quimiorradioterapia , Linfócitos
11.
Nucleic Acids Res ; 50(11): 6313-6331, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35648484

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA damage sensor and contributes to both DNA repair and cell death processes. However, how PARP-1 signaling is regulated to switch its function from DNA repair to cell death remains largely unknown. Here, we found that PARP-1 plays a central role in alkylating agent-induced PARthanatic cancer cell death. Lysine demethylase 6B (KDM6B) was identified as a key regulator of PARthanatos. Loss of KDM6B protein or its demethylase activity conferred cancer cell resistance to PARthanatic cell death in response to alkylating agents. Mechanistically, KDM6B knockout suppressed methylation at the promoter of O6-methylguanine-DNA methyltransferase (MGMT) to enhance MGMT expression and its direct DNA repair function, thereby inhibiting DNA damage-evoked PARP-1 hyperactivation and subsequent cell death. Moreover, KDM6B knockout triggered sustained Chk1 phosphorylation and activated a second XRCC1-dependent repair machinery to fix DNA damage evading from MGMT repair. Inhibition of MGMT or checkpoint response re-sensitized KDM6B deficient cells to PARthanatos induced by alkylating agents. These findings provide new molecular insights into epigenetic regulation of PARP-1 signaling mediating DNA repair or cell death and identify KDM6B as a biomarker for prediction of cancer cell vulnerability to alkylating agent treatment.


Assuntos
Dacarbazina , Parthanatos , Alquilantes , DNA , Reparo do DNA , Dacarbazina/farmacologia , Epigênese Genética , Guanina/análogos & derivados , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Temozolomida/farmacologia
12.
BMC Public Health ; 24(1): 1667, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909195

RESUMO

BACKGROUND: HALE is now a regular strategic planning indicator for all levels of the Chinese government. However, HALE measurements necessitate comprehensive data collection and intricate technology. Therefore, effectively converting numerous diseases into the years lived with disability (YLD) rate is a significant challenge for HALE measurements. Our study aimed to construct a simple YLD rate measurement model with high applicability based on the current situation of actual data resources within China to address challenges in measuring HALE target values during planning. METHODS: First, based on the Chinese YLD rate in the Global Burden of Disease (GBD) 2019, Pearson correlation analysis, the global optimum method, etc., was utilized to screen the best predictor variables from the current Chinese data resources. Missing data for predictor variables were filled in via spline interpolation. Then, multiple linear regression models were fitted to construct the YLD rate measurement model. The Sullivan method was used to measure HALE. The Monte Carlo method was employed to generate 95% uncertainty intervals. Finally, model performances were assessed using the mean absolute error (MAE) and mean absolute percentage error (MAPE). RESULTS: A three-input-parameter model was constructed to measure the age-specific YLD rates by sex in China, directly using the incidence of infectious diseases, the incidence of chronic diseases among persons aged 15 and older, and the addition of an under-five mortality rate covariate. The total MAE and MAPE for the combined YLD rate were 0.0007 and 0.5949%, respectively. The MAE and MAPE of the combined HALE in the 0-year-old group were 0.0341 and 0.0526%, respectively. There were slightly fewer males (0.0197, 0.0311%) than females (0.0501, 0.0755%). CONCLUSION: We constructed a high-accuracy model to measure the YLD rate in China by using three monitoring indicators from the Chinese national routine as predictor variables. The model provides a realistic and feasible solution for measuring HALE at the national and especially regional levels, considering limited data.


Assuntos
Expectativa de Vida , Humanos , China/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Adolescente , Idoso de 80 Anos ou mais , Lactente , Adulto Jovem , Pré-Escolar , Modelos Estatísticos , Criança , Recém-Nascido , Anos de Vida Ajustados por Deficiência , Anos de Vida Ajustados por Qualidade de Vida
13.
Artigo em Inglês | MEDLINE | ID: mdl-38824095

RESUMO

BACKGROUND: In patients with hilar cholangiocarcinoma (HCCA), radical resection can be achieved by resection and reconstruction of the vasculature. However, whether vascular reconstruction (VR) improves long-term and short-term prognosis has not been demonstrated comprehensively. METHODS: This was a retrospective multicenter study of patients who received surgery for HCCA with or without VR. Variables associated with overall survival (OS) and recurrence-free survival (RFS) were identified based on Cox regression. Kaplan-Meier curves were used to explore the impact of VR. Restricted mean survival time (RMST) was used for comparisons of short-term survival between the groups. Patients' intraoperative and postoperative characteristics were compared. RESULTS: Totally 447 patients were enrolled. We divided these patients into 3 groups: VR with radical resections (n = 84); non-VR radical resections (n = 309) and non-radical resection (we pooled VR-nonradical and non-VR nonradical together, n = 54). Cox regression revealed that carbohydrate antigen 242 (CA242), vascular invasion, lymph node metastasis and poor differentiation were independent risk factors for OS and RFS. There was no significant difference of RMST between the VR and non-VR radical groups within 12 months after surgery (10.18 vs. 10.76 mon, P = 0.179), although the 5-year OS (P < 0.001) and RFS (P < 0.001) were worse in the VR radical group. The incidences of most complications were not significantly different, but those of bile leakage (P < 0.001) and postoperative infection (P = 0.009) were higher in the VR radical group than in the non-VR radical group. Additionally, the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) up to 7 days after surgery tended to decrease in all groups. There was no significant difference in the incidence of postoperative liver failure between the VR and non-VR radical groups. CONCLUSIONS: Radical resection can be achieved with VR to improve the survival rate without worsening short-term survival compared with resection with non-VR. After adequate assessment of the patient's general condition, VR can be considered in the resection.

14.
J Biol Chem ; 298(6): 101945, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447110

RESUMO

Inorganic phosphate is essential for human life. The widely expressed mammalian sodium/phosphate cotransporter SLC20A1/PiT1 mediates phosphate uptake into most cell types; however, while SLC20A1 is required for development, and elevated SLC20A1 expression is associated with vascular calcification and aggressive tumor growth, the mechanisms regulating SLC20A1 protein abundance are unknown. Here, we found that SLC20A1 protein expression is low in phosphate-replete cultured cells but is strikingly induced following phosphate starvation, whereas mRNA expression is high in phosphate-replete cells and only mildly increased by phosphate starvation. To identify regulators of SLC20A1 protein levels, we performed a genome-wide CRISPR-based loss-of-function genetic screen in phosphate-replete cells using SLC20A1 protein induction as readout. Our screen revealed that endosomal sorting complexes required for transport (ESCRT) machinery was essential for proper SLC20A1 protein downregulation in phosphate-replete cells. We show that SLC20A1 colocalizes with ESCRT and that ESCRT deficiency increases SLC20A1 protein and phosphate uptake into cells. We also found numerous additional candidate regulators of mammalian phosphate homeostasis, including genes modifying protein ubiquitination and the Krebs cycle and oxidative phosphorylation pathways. Many of these targets have not been previously implicated in this process. We present here a model in which SLC20A1 protein abundance and phosphate uptake are tonically negatively regulated post-transcriptionally in phosphate-replete cells through direct ESCRT-mediated SLC20A1 degradation. Moreover, our screening results provide a comprehensive resource for future studies to elucidate the mechanisms governing cellular phosphate homeostasis. We conclude that genome-wide CRISPR-based genetic screening is a powerful tool to discover proteins and pathways relevant to physiological processes.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Regulação da Expressão Gênica , Fosfatos , Transporte Biológico , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Fosfatos/metabolismo
15.
J Biol Chem ; 298(2): 101463, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34864058

RESUMO

Interleukin (IL)-22 is a cytokine that plays a critical role in intestinal epithelial homeostasis. Its downstream functions are mediated through interaction with the heterodimeric IL-22 receptor and subsequent activation of signal transducer and activator of transcription 3 (STAT3). IL-22 signaling can induce transcription of genes necessary for intestinal epithelial cell proliferation, tissue regeneration, tight junction fortification, and antimicrobial production. Recent studies have also implicated IL-22 signaling in the regulation of intestinal epithelial fucosylation in mice. However, whether IL-22 regulates intestinal fucosylation in human intestinal epithelial cells and the molecular mechanisms that govern this process are unknown. Here, in experiments performed in human cell lines and human-derived enteroids, we show that IL-22 signaling regulates expression of the B3GNT7 transcript, which encodes a ß1-3-N-acetylglucosaminyltransferase that can participate in the synthesis of poly-N-acetyllactosamine (polyLacNAc) chains. Additionally, we find that IL-22 signaling regulates levels of the α1-3-fucosylated Lewis X (Lex) blood group antigen, and that this glycan epitope is primarily displayed on O-glycosylated intestinal epithelial glycoproteins. Moreover, we show that increased expression of B3GNT7 alone is sufficient to promote increased display of Lex-decorated carbohydrate glycan structures primarily on O-glycosylated intestinal epithelial glycoproteins. Together, these data identify B3GNT7 as an intermediary in IL-22-dependent induction of fucosylation of glycoproteins and uncover a novel role for B3GNT7 in intestinal glycosylation.


Assuntos
Células Epiteliais , Glicoproteínas , Interleucinas , Mucosa Intestinal , N-Acetilglucosaminiltransferases , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , N-Acetilglucosaminiltransferases/biossíntese , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Interleucina 22
16.
Behav Genet ; 53(4): 374-382, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36622576

RESUMO

Most human traits are influenced by the interplay between genetic and environmental factors. Many statistical methods have been proposed to screen for gene-environment interaction (GxE) in the post genome-wide association study era. However, most of the existing methods assume a linear interaction between genetic and environmental factors toward phenotypic variations, which diminishes statistical power in the case of nonlinear GxE. In this paper, we present a flexible statistical procedure to detect GxE regardless of whether the underlying relationship is linear or not. By modeling the joint genetic and GxE effects as a varying-coefficient function of the environmental factor, the proposed model is able to capture dynamic trajectories of GxE. We employ a likelihood ratio test with a fast Monte Carlo algorithm for hypothesis testing. Simulations were conducted to evaluate validity and power of the proposed model in various settings. Real data analysis was performed to illustrate its power, in particular, in the case of nonlinear GxE.


Assuntos
Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Humanos , Modelos Genéticos , Fenótipo , Funções Verossimilhança
17.
Mol Psychiatry ; 27(12): 5213-5226, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028572

RESUMO

The excitatory neurotransmitter glutamate shapes learning and memory, but the underlying epigenetic mechanism of glutamate regulation in neuron remains poorly understood. Here, we showed that lysine demethylase KDM6B was expressed in excitatory neurons and declined in hippocampus with age. Conditional knockout of KDM6B in excitatory neurons reduced spine density, synaptic vesicle number and synaptic activity, and impaired learning and memory without obvious effect on brain morphology in mice. Mechanistically, KDM6B upregulated vesicular glutamate transporter 1 and 2 (VGLUT1/2) in neurons through demethylating H3K27me3 at their promoters. Tau interacted and recruited KDM6B to the promoters of Slc17a7 and Slc17a6, leading to a decrease in local H3K27me3 levels and induction of VGLUT1/2 expression in neurons, which could be prevented by loss of Tau. Ectopic expression of KDM6B, VGLUT1, or VGLUT2 restored spine density and synaptic activity in KDM6B-deficient cortical neurons. Collectively, these findings unravel a fundamental mechanism underlying epigenetic regulation of synaptic plasticity and cognition.


Assuntos
Epigênese Genética , Histona Desmetilases com o Domínio Jumonji , Plasticidade Neuronal , Proteínas tau , Animais , Camundongos , Cognição/fisiologia , Ácido Glutâmico/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas tau/metabolismo
18.
Nature ; 541(7636): 222-227, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798600

RESUMO

The adult mammalian heart is incapable of regeneration following cardiomyocyte loss, which underpins the lasting and severe effects of cardiomyopathy. Recently, it has become clear that the mammalian heart is not a post-mitotic organ. For example, the neonatal heart is capable of regenerating lost myocardium, and the adult heart is capable of modest self-renewal. In both of these scenarios, cardiomyocyte renewal occurs via the proliferation of pre-existing cardiomyocytes, and is regulated by aerobic-respiration-mediated oxidative DNA damage. Therefore, we reasoned that inhibiting aerobic respiration by inducing systemic hypoxaemia would alleviate oxidative DNA damage, thereby inducing cardiomyocyte proliferation in adult mammals. Here we report that, in mice, gradual exposure to severe systemic hypoxaemia, in which inspired oxygen is gradually decreased by 1% and maintained at 7% for 2 weeks, results in inhibition of oxidative metabolism, decreased reactive oxygen species production and oxidative DNA damage, and reactivation of cardiomyocyte mitosis. Notably, we find that exposure to hypoxaemia 1 week after induction of myocardial infarction induces a robust regenerative response with decreased myocardial fibrosis and improvement of left ventricular systolic function. Genetic fate-mapping analysis confirms that the newly formed myocardium is derived from pre-existing cardiomyocytes. These results demonstrate that the endogenous regenerative properties of the adult mammalian heart can be reactivated by exposure to gradual systemic hypoxaemia, and highlight the potential therapeutic role of hypoxia in regenerative medicine.


Assuntos
Coração/crescimento & desenvolvimento , Hipóxia/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Regeneração , Medicina Regenerativa/métodos , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Proliferação de Células , Respiração Celular , Dano ao DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitose , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Função Ventricular Esquerda
19.
Proc Natl Acad Sci U S A ; 117(34): 20729-20740, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32796104

RESUMO

Tissue-resident macrophages can originate from embryonic or adult hematopoiesis. They play important roles in a wide range of biological processes including tissue remodeling during organogenesis, organ homeostasis, repair following injury, and immune response to pathogens. Although the origins and tissue-specific functions of resident macrophages have been extensively studied in many other tissues, they are not well characterized in skeletal muscle. In the present study, we have characterized the ontogeny of skeletal muscle-resident macrophages by lineage tracing and bone marrow transplant experiments. We demonstrate that skeletal muscle-resident macrophages originate from both embryonic hematopoietic progenitors located within the yolk sac and fetal liver as well as definitive hematopoietic stem cells located within the bone marrow of adult mice. Single-cell-based transcriptome analyses revealed that skeletal muscle-resident macrophages are distinctive from resident macrophages in other tissues as they express a distinct complement of transcription factors and are composed of functionally diverse subsets correlating to their origins. Functionally, skeletal muscle-resident macrophages appear to maintain tissue homeostasis and promote muscle growth and regeneration.


Assuntos
Macrófagos/imunologia , Músculo Esquelético/imunologia , Animais , Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Diferenciação Celular/genética , Linhagem da Célula/genética , Desenvolvimento Embrionário , Feminino , Heterogeneidade Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Organogênese/genética
20.
Proc Natl Acad Sci U S A ; 117(11): 5782-5790, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123087

RESUMO

Transfer RNAs (tRNAs) are products of RNA polymerase III (Pol III) and essential for mRNA translation and ultimately cell growth and proliferation. Whether and how individual tRNA genes are specifically regulated is not clear. Here, we report that SOX4, a well-known Pol II-dependent transcription factor that is critical for neurogenesis and reprogramming of somatic cells, also directly controls, unexpectedly, the expression of a subset of tRNA genes and therefore protein synthesis and proliferation of human glioblastoma cells. Genome-wide location analysis through chromatin immunoprecipitation-sequencing uncovers specific targeting of SOX4 to a subset of tRNA genes, including those for tRNAiMet Mechanistically, sequence-specific SOX4-binding impedes the recruitment of TATA box binding protein and Pol III to tRNA genes and thereby represses their expression. CRISPR/Cas9-mediated down-regulation of tRNAiMet greatly inhibits growth and proliferation of human glioblastoma cells. Conversely, ectopic tRNAiMet partially rescues SOX4-mediated repression of cell proliferation. Together, these results uncover a regulatory mode of individual tRNA genes to control cell behavior. Such regulation may coordinate codon usage and translation efficiency to meet the demands of diverse tissues and cell types, including cancer cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/metabolismo , RNA de Transferência/metabolismo , Fatores de Transcrição SOXC/metabolismo , Linhagem Celular Tumoral , DNA Polimerase III/metabolismo , Células HEK293 , Humanos , RNA de Transferência/genética , Fatores de Transcrição SOXC/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA