Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 25(8): 7875-7883, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29297166

RESUMO

Trace elements (TEs) could pose a potential threat to the environment and human health and hence they have been paid attention increasingly at present. This study presents the acid-leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the Tibetan Plateau (TP) from April to May in 2013. A nonparametric Jonckheere-Terpstra Method was used to test the trend of spatial distribution of TEs. The statistical analysis indicates that TEs were the highest in the QMLK glacier, lowest in the YZF glacier, and comparable in the other three glaciers. Comparison with other glaciers of the plateau, the statistical analysis on As, Cu, Mo, Pb, and Sb shows that their concentrations had, in general, a decreasing distribution characteristic from the north to the south of TP, which indicates that the northern TP is loading more atmospheric-polluted impurity than central and southern TP. Enrichment factor (EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr, and Cu originated mainly from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion, and traffic emission made an important contribution to the Mo, Pb, and Sb. Evidences from air mass back trajectories show that TEs in the five studied glaciers might not only come from surrounding areas of glaciers but also might be long-range transported by atmosphere from the Central Asia and South Asia and deposited on these glaciers.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Camada de Gelo/química , Neve/química , Oligoelementos/análise , Poeira/análise , Humanos , Análise Espaço-Temporal , Tibet
2.
Chemosphere ; 200: 523-531, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29501889

RESUMO

In order to extract pollution signal of trace elements (TEs) in glacier snow at the Qinghai-Tibetan plateau of China by human activities, concentrations of 18 TEs (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y and Th in digested snow samples from five glaciers in April-May 2013 before monsoon season were measured. Results shown that higher TEs concentrations were found in glaciers at the northern plateau while lower concentrations in glaciers at the central and southern plateau. Discussion revealed that EF values calculated from elements with mass fraction <30% such as Ti and Al, etc in traditional acid leached samples, will overestimate at least 4.6 times the contribution of other sources than dust for TEs such as Sb, Sr, As, Cu and Pb etc. Analysis indicated that most TEs mainly originated from dust sources, whereas Pb, Cu, Mo and Sb showed occasionally significant contributions from polluted sources in three snow pits and the GRHK surface snow samples. The pollution probably originated from mining and smelting, road transport emissions on the plateau and some regions outside of the plateau. Dust provenance tracing results based on REEs indicated that Taklimakan Desert, Qaidam Basin, and Tibetan surface soil were the potential dust sources for the studied glaciers, while the Indian Thar Desert was an occasional dust sources for YZF,XDKMD and GRHK snow samples.


Assuntos
Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Camada de Gelo/química , Estações do Ano , Neve/química , Oligoelementos/análise , China , Humanos , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA