Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(4): 2369-2376, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230676

RESUMO

Urinary tract infections (UTIs) have greatly affected human health in recent years. Accurate and rapid diagnosis of UTIs can enable a more effective treatment. Herein, we developed a multichannel sensor array for efficient identification of bacteria based on three antimicrobial agents (vancomycin, lysozyme, and bacitracin) functional gold nanoclusters (AuNCs). In this sensor, the fluorescence intensity of the three AuNCs was quenched to varying degrees by the bacterial species, providing a unique fingerprint for different bacteria. With this sensing platform, seven pathogenic bacteria, different concentrations of the same bacteria, and even bacterial mixtures were successfully differentiated. Furthermore, UTIs can be accurately identified with our sensors in ∼30 min with 100% classification accuracy. The proposed sensing systems offer a rapid, high-throughput, and reliable sensing platform for the diagnosis of UTIs.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Ouro , Vancomicina , Bactérias , Espectrometria de Fluorescência
2.
Luminescence ; 39(2): e4667, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38178733

RESUMO

Ciprofloxacin (CIP) is a widely used broad-spectrum antibiotic and has been associated with various side effects, making its accurate detection crucial for patient safety, drug quality compliance, and environmental and food safety. This study presents the development of a ternary nucleotide-lanthanide coordination nanoprobe, GMP-Tb-BDC (GMP: guanosine 5'-monophosphate, BDC: 2-amino-1,4-benzenedicarboxylic acid), for the sensitive and ratiometric detection of CIP. The GMP-Tb-BDC nanoprobe was constructed by incorporating the blue-emissive ligand BDC into the Tb/GMP coordination polymers. Upon the addition of CIP, the fluorescence of terbium ion (Tb3+ ) was significantly enhanced due to the coordination and fluorescence sensitization properties of CIP, while the emission of the BDC ligand remained unchanged. The nanoprobe demonstrated good linearity in the concentration range of 0-10 µM CIP. By leveraging mobile phone software to analyze the color signals, rapid on-site analysis of CIP was achieved. Furthermore, the nanoprobe exhibited accurate analysis of CIP in actual drug and milk samples. This study showcases the potential of the GMP-Tb-BDC nanoprobe for practical applications in CIP detection.


Assuntos
Elementos da Série dos Lantanídeos , Humanos , Ciprofloxacina , Nucleotídeos , Ligantes , Térbio , Guanosina Monofosfato
3.
Mikrochim Acta ; 191(3): 121, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308135

RESUMO

Hydroxyl radical (•OH) detection is pivotal in medicine, biochemistry and environmental chemistry. Yet, electrochemical method-specific detection is challenging because of hydroxyl radicals' high reactivity and short half-life. In this study, we aimed to modify the electrode surface with a specific recognition probe for •OH. To achieve this, we conducted a one-step hydrothermal process to fabricate a CoZnMOF bimetallic organic framework directly onto conductive graphite paper (Gp). Subsequently, we introduced salicylic acid (SA) and methylene blue (MB), which easily penetrated the pores of CoZnMOF. By selectively capturing •OH by SA and leveraging the electrochemical signal generated by the reaction product, we successfully developed an electrochemical sensor Gp/CoZnMOF/SA + MB. The prepared sensor exhibited a good linear relationship with •OH concentrations ranging from 1.25 to 1200 nM, with a detection limit of 0.2 nM. Additionally, the sensor demonstrated excellent reproducibility and accuracy due to the incorporation of an internal reference. It exhibited remarkable selectivity for •OH detection, unaffected by other electrochemically active substances. The establishment of this sensor provides a way to construct MOF-modified sensors for the selective detection of other reactive oxygen species (ROS), offering a valuable experimental basis for ROS-related disease research and environmental safety investigations.

4.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930988

RESUMO

In-depth insights into the oligomers of carbon dots (CDs) prepared from small-molecule precursors are important in the study of the carbonization mechanism of CDs and for our knowledge of their complex structure. Herein, citric acid (CA) and ethylenediamine (EDA) were used as small-molecule precursors to prepare CDs in an aqueous solution. The structure of oligomers acquired from CA and EDA in different molar ratios and their formation process were first studied using density functional theory, including the dispersion correction (DFT-D3) method. The results showed that the energy barrier of dimer cyclization was higher than that of its linear polymerization, but the free energy of the cyclized product was much lower than that of its reactant, and IPCA (5-oxo-1,-2,3,5-tetrahydroimidazo [1,2-a]pyridine-7-carboxylic acid) could therefore be obtained under certain conditions. The oligomers obtained from different molar ratios of EDA and CA were molecular clusters formed by short polyamide chains through intermolecular forces; with the exception of when the molar ratio of EDA to CA was 0.5, excessive CA did not undergo an amidation reaction but rather attained molecular clusters directly through intermolecular forces. These oligomers exhibited significant differences in their surface functional groups, which would affect the carbonization process and the surface structure of CDs.

5.
Molecules ; 29(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38257238

RESUMO

Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges. This comprehensive review delves into the latest advancements in electrochemical methods for detecting formaldehyde, a compound of growing concern due to its widespread use and potential health hazards. This review underscores the inherent advantages of electrochemical techniques, such as high sensitivity, selectivity, and capability for real-time analysis, making them highly effective for formaldehyde monitoring. We explore the fundamental principles, mechanisms, and diverse methodologies employed in electrochemical formaldehyde detection, highlighting the role of innovative sensing materials and electrodes. Special attention is given to recent developments in nanotechnology and sensor design, which significantly enhance the sensitivity and selectivity of these detection systems. Moreover, this review identifies current challenges and discusses future research directions. Our aim is to encourage ongoing research and innovation in this field, ultimately leading to the development of advanced, practical solutions for formaldehyde detection in various environmental and biological contexts.

6.
Anal Chem ; 95(21): 8340-8347, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192372

RESUMO

Biomarkers detection in blood with high accuracy is crucial for the diagnosis and treatment of many diseases. In this study, the proof-of-concept fabrication of a dual-mode sensor based on a single probe (Re-BChE) using a dual-signaling electrochemical ratiometric strategy and a "turn-on" fluorescent method is presented. The probe Re-BChE was synthesized in a single step and demonstrated dual mode response toward butyrylcholinesterase (BChE), a promising biomarker of Alzheimer's disease (AD). Due to the specific hydrolysis reaction, the probe Re-BChE demonstrated a turn-on current response for BChE at -0.28 V, followed by a turn-off current response at -0.18 V, while the fluorescence spectrum demonstrated a turn-on response with an emission wavelength of 600 nm. The developed ratiometric electrochemical sensor and fluorescence detection demonstrated high sensitivity with BChE concentrations with a low detection limit of 0.08 µg mL-1 and 0.05 µg mL-1, respectively. Importantly, the dual-mode sensor presents the following advantages: (1) dual-mode readout can correct the impact of systematic or background error, thereby achieving more accurate results; (2) the responses of dual-mode readout originate from two distinct mechanisms and relatively independent signal transduction, in which there is no interference between two signaling routes. Additionally, compared with the reported single-signal electrochemical assays for BChE, both redox potential signals were detected in the absence of biological interference within a negative potential window. Furthermore, it was discovered that the outcomes of direct dual-mode electrochemical and fluorescence quantifications of the level of BChE in serum were in agreement with those obtained from the use of commercially available assay kits for BChE sensing. This method has the potential to serve as a useful point-of-care tool for the early detection of AD.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Doença de Alzheimer/diagnóstico , Corantes Fluorescentes , Biomarcadores
7.
Chemistry ; 29(28): e202300450, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36802106

RESUMO

Beta-site secretase (BACE1) catalyzes the cleavage of amyloid precursor protein (APP), which process ultimately lead to plaque deposition in the brain of Alzheimer's disease (AD). Thus, accurate monitor of BACE1 activity is essential to screen inhibitors for AD treatment. This study develops a sensitive electrochemical assay for probing BACE1 activity based on silver nanoparticles (AgNPs) and tyrosine conjugation as tags and a marking method, respectively. An APP segment is firstly immobilized on aminated microplate reactor. Cytosine (C) rich sequence-templated AgNPs/Zr-based metal-organic framework (MOF) composite is modified by phenol groups, and then the prepared tag (ph-AgNPs@MOF) is captured in microplate surface by the conjugation reaction of phenolic groups between tyrosine and tag. After cleavage by BACE1, the solution containing ph-AgNPs@MOF tags is transferred to the screen-printed graphene electrode (SPGE) surface for voltammetric detection of AgNP signal. This sensitive detection for BACE1 provided an excellent linear relationship between 1 to 200 pM with a detection limit of 0.8 pM. Furthermore, this electrochemical assay is successfully applied for screening of BACE1 inhibitors. This strategy is also verified to be used for evaluation of BACE1 in serum samples.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Estruturas Metalorgânicas , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases , Prata , Tirosina , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
8.
Sens Actuators B Chem ; 378: 133121, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36514318

RESUMO

Alkaline phosphatase (ALP)-induced in situ fluorescent immunosensor is less investigated and reported. Herein, a high-performance ALP-labeled in situ fluorescent immunoassay platform was constructed. The developed platform was based on a fluorogenic self-assembly reaction between pyridineboronic acid (PyB(OH)2) and alizarin red S (ARS). We first used density functional theory (DFT) to theoretically calculate the changes of Gibbs free energy of the used chemicals before and after the combination and simulated the electrostatic potential on its' surfaces. The free ARS and PyB(OH)2 exist alone, neither emits no fluorescence. However, the ARS/PyB(OH)2 complex emits strong fluorescence, which could be effectively quenched by PPi based on the stronger affinity between PPi and PyB(OH)2 than that of ARS and PyB(OH)2. PyB(OH)2 coordinated with ARS again in the presence of ALP due to the ALP-catalyzed hydrolysis of PPi, and correspondingly, the fluorescence was restored. We chose cTnI and SARS-CoV-2 N protein as the model antigen to construct ALP-induced immunosensor, which exhibited a wide dynamic range of 0-175 ng/mL for cTnI and SARS-CoV-2 N protein with a low limit of detection (LOD) of 0.03 ng/mL and 0.17 ng/mL, respectively. Moreover, the proposed immunosensor was used to evaluate cTnI and SARS-CoV-2 N protein level in serum with satisfactory results. Consequently, the method laid the foundation for developing novel fluorescence-based ALP-labeled ELISA technologies in the early diagnosis of diseases.

9.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446874

RESUMO

Antimony (Sb) is a potential candidate anode for potassium-ion batteries (PIBs) owing to its high theoretical capacity. However; in the process of potassium alloying reaction; the huge volume expansion (about 407%) leads to pulverization of active substance as well as loss of electrical contact resulting in rapidly declining capacity. Herein; uniformly dispersed Sb-Nanodot in carbon frameworks (Sb-ND@C) were constructed by in situ confined polymerization of ionic liquids. Attributed to the uniformly dispersed Sb-ND and confinement effect of carbon frameworks; as anode for PIBs; Sb-ND@C delivered a superior rate capability (320.1 mA h g-1 at 5 A g-1) and an outstanding cycling stability (486 mA h g-1 after 1000 cycles; achieving 89.8% capacity retention). This work offers a facile route to prepare highly dispersed metal-Nanodot via the in situ polymerization of ionic liquid for high-performance metal-ion batteries.


Assuntos
Líquidos Iônicos , Polimerização , Carbono , Potássio
10.
Anal Chem ; 94(30): 10730-10736, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35853147

RESUMO

This study developed a novel luminescent assay for kinase activity using metal-organic coordination polymer nanoparticles (Tb/ATP-Zn) as the probe. Tb/ATP-Zn, self-assembled by adenosine triphosphate (ATP), Zn2+, and Tb3+, is non-luminescent. Protein kinase A (PKA) can catalyze the transformation of ATP within Tb/ATP-Zn nanoparticles to adenosine diphosphate (ADP), which in turn effectively sensitizes the luminescence of Tb3+. Based on this mechanism, Tb/ATP-Zn can realize the facile luminescent "turn-on" sensing of protein kinase activity without the use of external ATP and substrate peptide. Under optimized conditions, the fluorescence intensities of Tb/ATP-Zn at 550 nm are linear with the PKA activity within a range of 0.3-1.5 U·µL-1. The LOD (S/N = 3) of this method is down to 0.001 U·µL-1. The presented assay also features high selectivity, long-term stability, fast response, and convenient operation. Furthermore, Tb/ATP-Zn was successfully employed for monitoring PKA activity in cell lysis solutions. Probe Tb/ATP-Zn is thus expectable to be a powerful tool for the practical study of PKA in relevant biological events.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Trifosfato de Adenosina , Luminescência , Medições Luminescentes/métodos , Polímeros , Proteínas Quinases
11.
Anal Chem ; 94(34): 11940-11948, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35981232

RESUMO

Zinc, which is the second most abundant trace element in the human central nervous system, is closely associated with Alzheimer's disease (AD). However, attempts to develop highly sensitive and selective sensing systems for Zn2+ in the brain have not been successful. Here, we used a one-step solvothermal method to design and prepare a metal-organic framework (MOF) containing the dual ligands, terephthalic acid (H2BDC) and 2,2':6',2″-terpyridine (TPY), with Eu3+ as a metal node. This MOF is denoted as Eu-MOF/BDC-TPY. Adjustment of the size and morphology of Eu-MOF/BDC-TPY allowed the dual ligands to produce multiple luminescence peaks, which could be interpreted via ratiometric fluorescence to detect Zn2+ using the ratio of Eu3+-based emission, as the internal reference, and ligand-based emission, as the indicator. Thus, Eu-MOF/BDC-TPY not only displayed higher selectivity than other metal cations but also offered a highly accurate, sensitive, wide linear, color change-based technique for detecting Zn2+ at concentrations ranging from 1 nM to 2 µM, with a low limit of detection (0.08 nM). Moreover, Eu-MOF/BDC-TPY maintained structural stability and displayed a fluorescence intensity of at least 95.4% following storage in water for 6 months. More importantly, Eu-MOF/BDC-TPY sensed the presence of Zn2+ markedly rapidly (within 5 s), which was very useful in practical application. Furthermore, the results of our ratiometric luminescent method-based analysis of Zn2+ in AD mouse brains were consistent with those obtained using inductively coupled plasma mass spectrometry.


Assuntos
Doença de Alzheimer , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Doença de Alzheimer/diagnóstico , Animais , Európio/química , Humanos , Ligantes , Luminescência , Estruturas Metalorgânicas/química , Camundongos , Microdiálise , Zinco
12.
Anal Bioanal Chem ; 414(5): 2021-2028, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35013805

RESUMO

The simply constructed fluorescent sensor with inexpensive reagents and low toxicity has attracted increasing attention contributing to its practical application. However, the common construction methods usually required a few building blocks and complex procedures, which is inconvenient for their further application. Herein, a simply constructed fluorescent Hg2+ sensor has been developed based on the intrinsic fluorescence quenching power of G-quadruplex. Two components, AGRO 100 and AMT, were used to construct the sensor. AMT was selected as the fluorescent probe because of its distinct merits. The free AMT emits strongly. However, the fluorescence of AMT could be quenched by G-quadruplex DNA. Additionally, AMT is less toxic and inexpensive. AGRO 100 acts as both the quencher and the capture sequence because it consists of G-rich sequences and T-T mismatched base pairs. The fluorescence of AMT could be quenched by the formed G-quadruplex structure of AGRO 100 in the presence of K+. In the presence of Hg2+, G-quadruplex structure of AGRO 100 was switched to hairpin DNA structure because T-T mismatched base pairs in AGRO 100 could specifically recognize and capture Hg2+ with high affinity. Thus, AMT was released and the fluorescence of AMT was recovered. The developed sensing system was successfully applied to detect Hg2+ in human serum with good recovery and reproducibility.


Assuntos
Mercúrio/sangue , Técnicas Biossensoriais/métodos , Corantes Fluorescentes/química , Quadruplex G , Humanos , Limite de Detecção , Conformação de Ácido Nucleico , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
13.
Mikrochim Acta ; 189(7): 263, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776229

RESUMO

As a vital gaseous signal molecule involved in various physiological and pathological processes, nitric oxide (NO) has attracted extensive attention in the last few decades. In this work, a copper and cobalt element-doped, biphenyl-(3, 4', 5)-tricarboxylic acid (H3PTC)-synthesized metal organic framework (CuCo-PTC MOF) composite with catalytic ability was synthesized by solvothermal method. The material can catalyse the oxidation of o-phenylenediamine (OPD) groups by hydrogen peroxide (H2O2) to form fluorophores (OPDox) with yellow fluorescence emission and greatly improves its reaction rate. In the presence of NO, OPD will react with NO to produce N-(2-hydrazinophenyl) methylamine, and the group will not react with H2O2. Therefore, the concentration of NO can be measured indirectly by comparing the changes of fluorescence intensity in the presence and absence of NO. As the concentration of NO changes, the change of solution colour (from bright yellow to colourless) can also be observed under a 365-nm UV lamp. Furthermore, the method represents high selectivity for NO and shows a fast (within 5 min) and specific fluorescence response toward NO with a linear range from 0.25 to 2.0 µM; the strategy has a limit of detection (LOD) of  0.15 µM. More importantly, the probe was successfully used to detect NO in cell lysate. The recovery was between 98.5 and 103.6%, and the relative standard deviation was between 0.4 and 1.8%. The endogenous NO in cells was successfully detected under the stimulation of L-arginine, which proved the possibility of the probe in real-time and rapid sensing in actual samples and cells. The results indicate that this sensing strategy has the potential to detect NO in the internal environment. Schematic of fluorescence detection of NO.


Assuntos
Estruturas Metalorgânicas , Catálise , Peróxido de Hidrogênio , Limite de Detecção , Óxido Nítrico
14.
Mikrochim Acta ; 190(1): 12, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478524

RESUMO

R-CDAs have been synthesized in a one-pot solvothermal procedure starting from 3,4-diaminobenzoic acid in an acidic medium. Transmission electron microscopy (TEM) revealed that R-CDAs nanoparticles exhibited a much larger diameter of 7.2-28.8 nm than traditional monodisperse carbon dots. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) revealed the presence of polar functional groups (hydroxyl, amino, carboxyl) on the surface of R-CDAs. Upon excitation with visible light (550 nm), R-CDAs emit stable, red fluorescence with a maximum at 610 nm. Under the optimum conditions, Cu2+ ions quench the fluorescence of this probe, and the signal is linear in a concentration range of copper ions between 5 and 600 nM with the detection limit of only 0.4 nM. Recoveries from 98.0 to 105.0% and relative standard deviations (RSD) from 2.8 to 4.5% have been obtained for detection of Cu2+ in real water samples. Furthermore, the R-CDAs fluorescent probe showed negligible cytotoxicity toward HeLa cells and good bioimaging ability, suggesting its potential applicability as a diagnostic tool in biomedicine.


Assuntos
Carbono , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/toxicidade , Carbono/toxicidade , Células HeLa , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Anal Chem ; 93(41): 13815-13822, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609844

RESUMO

Brain pH has been proven to be a key factor in maintaining normal brain function. The relationship between local pH fluctuation and brain disease has not been extensively studied due to lack of the accurate in situ analysis technology. Herein, we have for the first time proposed a voltammetric pH sensor by measuring the ratio of current signals instead of the previously reported potential based on the Nernst equation. Single-walled carbon nanotubes (CNT) were first self-assembled on the electrode surface of a carbon-fiber nanotip electrode (CFNE). Then, poly-o-phenylenediamine (PoPD) molecules were deposited as pH-responsive molecules through in situ electrochemical polymerization. The compact CFNE/CNT/PoPD exhibited a good redox process with the on-off-on ratiometric electrochemical response to pH ranging from 4.5 to 8.2, providing self-correction for in situ pH detection. Thus, the proposed sensor enabled the accurate measurement of pH with excellent selectivity even in the presence of proteins or electroactive species. In addition, the sensor showed high repeatability, reproducibility, and reversibility in measuring pH and even demonstrated good stability when it was exposed to air for 5 months. Finally, we successfully detected the fluctuation of pH in rat brains with cerebral ischemia and rat whole blood. Overall, this research not only provides a good tool for the detection of rat brain pH but also provides a new strategy for further designing nanosensors for intracellular or subcellular pH.


Assuntos
Nanotubos de Carbono , Animais , Encéfalo , Técnicas Eletroquímicas , Eletrodos , Concentração de Íons de Hidrogênio , Ratos , Reprodutibilidade dos Testes
16.
Anal Chem ; 92(22): 15079-15086, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33118803

RESUMO

Redox homeostasis between hypochlorous acid (HClO/ClO-) and ascorbic acid (AA) significantly impacts many physiological and pathological processes. Herein, we report a new electrochemical sensor for the simultaneous determination of HClO and AA in body fluids. We first coated a carbon fiber microelectrode (CFME) with a three-dimensional nanocomposite consisting of graphene oxide (GO) and carbon nanotubes (CNTs) to fabricate the CFME/GO-CNT electrode. After the electrochemical reduction of GO (ERGO), we integrated a latent 1-(3,7-bis(dimethylamino)-10H-phenothiazin-10-yl)-2-methylpropan-1-one (MBS) electrochemical molecular recognition probe to monitor HClO and employed anthraquinone (AQ) as an internal reference. The compact CFME/ERGO-CNT/AQ + MBS sensor enabled the accurate and simultaneous measurement of HClO and AA with excellent selectivity and sensitivity. Measurements were highly reproducible, and the sensor was stable and exceptionally biocompatible. We successfully detected changes in the redox cycles of HClO and AA in human body fluids. This sensor is a significant advance for the investigation of reactions involved in cellular redox regulation. More importantly, we have devised a strategy for the design and construction of ratiometric electrochemical biosensors for the simultaneous determination of various bioactive species.


Assuntos
Ácido Ascórbico/análise , Líquidos Corporais/química , Eletroquímica/instrumentação , Ácido Hipocloroso/análise , Ácido Ascórbico/química , Fibra de Carbono/química , Grafite/química , Humanos , Ácido Hipocloroso/química , Limite de Detecção , Oxirredução , Fatores de Tempo
17.
Analyst ; 145(8): 2995-3001, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32129377

RESUMO

This work reports the first example of a colorimetric H2S sensor constructed through G-quadruplex-Cu2+ (G4-Cu2+) peroxidase mimetics employing Cu2+ ions and G-rich DNA with signal amplification. In the hydrogen peroxide (H2O2)-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), the catalytic capacity of Cu2+ can be greatly improved in the presence of 22AG DNA, where 22AG DNA acts as a signal amplifier. However, G4-Cu2+ peroxidase mimetics lose their catalytic abilities after reacting with H2S. This is employed to develop a colorimetric assay of H2S without complex synthesis and instrumentation, with a linear range from 0.01 µM to 150 µM and a detection limit of 7.5 nM. The sensitivity of the sensor can also be adjusted by changing the concentration of Cu2+. Moreover, the developed sensor is successfully applied for the quantitative determination of H2S in human serum samples.


Assuntos
Colorimetria/métodos , Cobre/química , DNA/química , Quadruplex G , Sulfeto de Hidrogênio/sangue , Benzidinas/química , Compostos Cromogênicos/química , DNA/genética , Humanos , Peróxido de Hidrogênio/química , Sulfeto de Hidrogênio/química , Limite de Detecção , Oxirredução , Peroxidase/química
18.
Analyst ; 144(21): 6432-6437, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31584576

RESUMO

An electrochemical platform was proposed for highly sensitive and selective analysis of sialic acid based on molecularly imprinted polymers (MIPs), which were electropolymerized with the monomer molecules of 3-aminophenylboronic acid (ABA) on a carbon cloth (CC) electrode in the presence of template molecules. The fabricated sensor, named the PABA/CC-based MIP electrode, could be used for the detection of sialic acid because the reversible and covalent boronic acid-diol binding was sensitive to the electrochemical potential of the prepared sensor. The utilization of a CC film as the substrate could improve the sensitivity due to its good electrical conductivity and large surface area. Under the optimized conditions, a good relationship between the change in potential and the concentration of sialic acid was obtained in the range from 40 µM to 440 µM with a detection limit of 0.5 µM. The resulting MIP sensor also displayed good selectivity, reproducibility and stability. Moreover, this sensor was successfully applied for the evaluation of the sialic acid level in infant formulas.


Assuntos
Ácidos Borônicos/química , Carbono , Impressão Molecular , Ácido N-Acetilneuramínico/análise , Polímeros/síntese química , Potenciometria/instrumentação , Têxteis , Ácido 4-Aminobenzoico/química , Humanos , Concentração de Íons de Hidrogênio , Lactente , Fórmulas Infantis/química , Fenômenos Mecânicos , Polímeros/química
19.
Molecules ; 24(20)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623065

RESUMO

Thiophenol (PhSH) belongs to a class of highly reactive and toxic aromatic thiols with widespread applications in the chemical industry for preparing pesticides, polymers, and pharmaceuticals. In this review, we comprehensively summarize recent progress in the development of fluorescent probes for detecting and imaging PhSH. These probes are classified according to recognition moieties and are detailed on the basis of their structures and sensing performances. In addition, prospects for future research are also discussed.


Assuntos
Corantes Fluorescentes/química , Fenóis/química , Compostos de Sulfidrila/química , Amidas/química , Humanos , Relação Estrutura-Atividade
20.
Anal Chem ; 90(21): 12449-12455, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30110150

RESUMO

Metal-organic coordination polymers (MOCPs) have been emerging as very attractive nanomaterials due to their tunable nature and diverse applications. Herein, using Tb3+ as the luminescence center, 1,3,5-benzenetricarboxylate (BTC) as building block and Cu2+ as the signal modulator as well as a recognition unit, we propose a novel and effective lanthanide functionalized MOCP (LMOCP) fluorescent sensor (Cu-BTC/Tb) for amyloid ß-peptide (Aß) monomer, a biomarker for Alzheimer disease (AD). Specifically, Cu-BTC/Tb, created by postsynthesis modification strategy under room temperature, is almost nonemissive due to the quenching effect of Cu2+ in the MOCP, exhilaratingly, the presence of Aß1-40 triggered a significant emission enhancement of Cu-BTC/Tb assay due to the high binding affinity of Aß1-40 for Cu2+ and the subsequent suppression of the quenching effect. In the assay, this LMOCP sensor shows high sensitivity with detection limit of 0.3 nM. Due to its capability to eliminate autofluorescence, Cu-BTC/Tb was also applied to the time-gated detection of Aß1-40 in human plasma with promising results. This work presents a novel strategy for the construction of functional luminescent LMOCP for sensitively turn-on fluorescent sensing of Aß1-40. We believe the proposed strategy would inspire the development of various LMOCP-based fluorescent assays or medical imaging platforms for advanced biological implementations.


Assuntos
Peptídeos beta-Amiloides/sangue , Complexos de Coordenação/química , Corantes Fluorescentes/química , Elementos da Série dos Lantanídeos/química , Estruturas Metalorgânicas/química , Polímeros/química , Complexos de Coordenação/síntese química , Fluorescência , Corantes Fluorescentes/síntese química , Voluntários Saudáveis , Humanos , Estruturas Metalorgânicas/síntese química , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA