Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(3): 51, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369666

RESUMO

KEY MESSAGE: ClLOX, is located on chromosome 2 and encodes a lipoxygenase gene, which induced watermelon powdery mildew resistance by inhibiting pathogen spread. Powdery mildew is one of the most severe fungal diseases reducing yield and quality of watermelon (Citrullus lanatus L.) and other cucurbit crops. Genes responsible for powdery mildew resistance in watermelon are highly valuable. In this study, we first identified the QTL pm-lox for powdery mildew resistance in watermelon, located within a 0.93 Mb interval of chromosome 2, via XP-GWAS method using two F2 populations. The F2:3 families from one of the F2 populations were then used for fine-mapping the pm-lox locus into a 9,883 bp physical region between 29,581,906 and 29,591,789, containing only two annotated genes. Of these, only ClG42_02g0161300 showed a significant differential expression between the resistant and susceptible lines after powdery mildew inoculation based on RNA sequencing (RNA-seq) and qRT-PCR analysis, and is designated ClLOX. Derived Cleaved Amplified Polymorphic Sequence (dCAPs) markers were developed and validated. In addition, our tests showed that the resistance was anti-spread rather than anti-infection of the pathogen. This study identified a new resistance gene (ClLOX), provided insights into the mechanism of powdery mildew resistance, and developed a molecular marker for watermelon breeding.


Assuntos
Ascomicetos , Citrullus , Humanos , Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Citrullus/genética , Citrullus/microbiologia , Ascomicetos/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Nat Genet ; 56(8): 1750-1761, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38977857

RESUMO

To decipher the genetic diversity within the cucurbit genus Citrullus, we generated telomere-to-telomere (T2T) assemblies of 27 distinct genotypes, encompassing all seven Citrullus species. This T2T super-pangenome has expanded the previously published reference genome, T2T-G42, by adding 399.2 Mb and 11,225 genes. Comparative analysis has unveiled gene variants and structural variations (SVs), shedding light on watermelon evolution and domestication processes that enhanced attributes such as bitterness and sugar content while compromising disease resistance. Multidisease-resistant loci from Citrullus amarus and Citrullus mucosospermus were successfully introduced into cultivated Citrullus lanatus. The SVs identified in C. lanatus have not only been inherited from cordophanus but also from C. mucosospermus, suggesting additional ancestors beyond cordophanus in the lineage of cultivated watermelon. Our investigation substantially improves the comprehension of watermelon genome diversity, furnishing comprehensive reference genomes for all Citrullus species. This advancement aids in the exploration and genetic enhancement of watermelon using its wild relatives.


Assuntos
Citrullus , Genoma de Planta , Telômero , Citrullus/genética , Telômero/genética , Melhoramento Vegetal/métodos , Variação Genética , Filogenia , Domesticação , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA