Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838895

RESUMO

Exosomes released into the extracellular matrix have been reported to contain metabolic biomarkers of various diseases. These intraluminal vesicles are typically found in blood, urine, saliva, breast milk, cerebrospinal fluid, semen, amniotic fluid, and ascites. Analysis of exosomal content with specific profiles of DNA, microRNA, proteins, and lipids can mirror their cellular origin and physiological state. Therefore, exosomal cargos may reflect the physiological processes at cellular level and can potentially be used as biomarkers. Herein, we report an optical detection method for assaying exosomal biomarkers that supersedes the state-of-the-art time consuming and laborious assays such as ELISA and NTA. The proposed assay monitors the changes in optical properties of poly(3-(4-methyl-3'-thienyloxy) propyltriethylammonium bromide) upon interacting with aptamers/peptide nucleic acids in the presence or absence of target biomarkers. As a proof of concept, this study demonstrates facile assaying of microRNA, DNA, and advanced glycation end products in exosomes isolated from human plasma with detection levels of ~1.2, 0.04, and 0.35 fM/exosome, respectively. Thus, the obtained results illustrate that the proposed methodology is applicable for rapid and facile detection of generic exosomal biomarkers for facilitating diseases diagnosis.


Assuntos
Exossomos , MicroRNAs , Feminino , Humanos , Colorimetria , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Proteínas/metabolismo , Exossomos/metabolismo , Biomarcadores Tumorais/metabolismo
2.
Chempluschem ; 88(3): e202300009, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36853914

RESUMO

The emergence of multi-drug resistant bacteria strains has been an uphill battle in modern healthcare worldwide, due to the increasing difficulty of killing them. The evolving pathogenicity of bacteria has led to researchers searching for more effective antimicrobial therapeutics to successfully eliminate them without undesirable consequences to the human body. In recent years, antimicrobial photodynamic therapy (APDT), an obsolete technique for cancer treatments, has been reported to eradicate bacteria and biofilm-related infections. The principle of antimicrobial photodynamic therapy solely relies on the photosensitizers (PSs) generating reactive oxygen species, in the presence of oxygen and light, to destroy pathogens. Thus, it can target a broad spectrum of microorganisms, owing to the indirect interaction between PSs and the bacteria, resulting in the less likelihood for the development of drug resistant bacteria strains. This review will focus on the recent progress of APDT in the last five years and some future perspectives of APDT. The mechanism of APDT against bacteria and biofilms, various PSs used for APDT, and some common multidrug-resistant bacteria strains will be briefly introduced. The reported in vivo applications of APDT in the several types of bacterial infections that includes periodontitis, wound infections, keratitis, endophthalmitis and tuberculosis in the last five years will be summarized in detail.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA