Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Res ; 1835: 148920, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599511

RESUMO

Mitochondrial dysfunction has been implicated in the pathogenesis of Alzheimer's disease, a neurodegenerative disorder characterized by progressive cognitive decline. Voltage-dependent anion channel (VDAC), a protein located in the outer mitochondrial membrane, plays a critical role in regulating mitochondrial function and cellular energy metabolism. Recent studies have identified VDAC as a potential therapeutic target for Alzheimer's disease. This article aims to provide an overview of the role of VDAC in mitochondrial dysfunction, its association with Alzheimer's disease, and the potential of targeting VDAC for developing novel therapeutic interventions. Understanding the involvement of VDAC in Alzheimer's disease may pave the way for the development of effective treatments that can restore mitochondrial function and halt disease progression.


Assuntos
Doença de Alzheimer , Mitocôndrias , Canais de Ânion Dependentes de Voltagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Humanos , Canais de Ânion Dependentes de Voltagem/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais
2.
Heliyon ; 9(6): e17116, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484431

RESUMO

Chronic liver disease is a significant public health issue that can lead to considerable morbidity and mortality, imposing an enormous burden on healthcare resources. Understanding the mechanisms underlying chronic liver disease pathogenesis and developing effective treatment strategies are urgently needed. In this regard, the activation of liver resident macrophages, namely Kupffer cells, plays a vital role in liver inflammation and fibrosis. Macrophages display remarkable plasticity and can polarize into different phenotypes according to diverse microenvironmental stimuli. The polarization of macrophages into M1 pro-inflammatory or M2 anti-inflammatory phenotypes is regulated by complex signaling pathways such as the PI3K/Akt pathway. This review focuses on investigating the potential of using plant chemicals targeting the PI3K/Akt pathway for treating chronic liver disease while elucidating the polarization mechanism of macrophages under different microenvironments. Studies have demonstrated that inhibiting M1-type macrophage polarization or promoting M2-type polarization can effectively combat chronic liver diseases such as alcoholic liver disease, non-alcoholic fatty liver disease, and liver fibrosis. The PI3K/Akt pathway acts as a pivotal modulator of macrophage survival, migration, proliferation, and their responses to metabolism and inflammatory signals. Activating the PI3K/Akt pathway induces anti-inflammatory cytokine expression, resulting in the promotion of M2-like phenotype to facilitate tissue repair and resolution of inflammation. Conversely, inhibiting PI3K/Akt signaling could enhance the M1-like phenotype, which exacerbates liver damage. Targeting the PI3K/Akt pathway has tremendous potential as a therapeutic strategy for regulating macrophage polarization and activity to treat chronic liver diseases with plant chemicals, providing new avenues for liver disease treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA