Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Small ; : e2400771, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751055

RESUMO

Periodontitis is the leading cause of adult tooth missing. Thorny bacterial biofilm and high reactive oxygen species (ROS) levels in tissue are key elements for the periodontitis process. It is meaningful to develop an advanced therapeutic system with sequential antibacterial/ antioxidant ability to meet the overall goals of periodontitis therapy. Herein, a dual-polymer functionalized melanin-AgNPs (P/D-MNP-Ag) with biofilm penetration, hydroxyapatite binding, and sequentially treatment ability are fabricated. Polymer enriched with 2-(Dimethylamino)ethyl methacrylate (D), can be protonated in an acid environment with enhanced positive charge, promoting penetration in biofilm. The other polymer is rich in phosphate group (P) and can chelate Ca2+, promoting the polymer to adhere to the hydroxyapatite surface. Melanin has good ROS scavenging and photothermal abilities, after in situ reduction Ag, melanin-AgNPs composite has sequentially transitioned between antibacterial and antioxidative ability due to heat and acid accelerated Ag+ release. The released Ag+ and heat have synergistic antibacterial effects for bacterial killing. With Ag+ consumption, the antioxidant ability of MNP recovers to scavenge ROS in the inflammatory area. When applied in the periodontitis model, P/D-MNP-Ag has good therapeutical effects to ablate biofilm, relieve inflammation state, and reduce alveolar bone loss. P/D-MNP-Ag with sequential treatment ability provides a reference for developing advanced oral biofilm eradication systems.

2.
Small ; 19(14): e2206767, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36642851

RESUMO

Due to the upstream pressure of lithium resources, low-cost sodium-ion batteries (SIBs) have become the most potential candidates for energy storage systems in the new era. However, anode materials of SIBs have always been a major problem in their development. To address this, V2 C/Fe7 S8 @C composites with hierarchical structures prepared via an in situ synthesis method are proposed here. The 2D V2 C-MXene as the growth substrate for Fe7 S8  greatly improves the rate capability of SIBs, and the carbon layer on the surface provides a guarantee for charge-discharge stability. Unexpectedly, the V2 C/Fe7 S8 @C anode achieves satisfactory sodium storage capacity and exceptional rate performance (389.7 mAh g-1  at 5 A g-1 ). The sodium storage mechanism and origin of composites are thoroughly studied via ex situ characterization techniques and first-principles calculations. Furthermore, the constructed sodium-ion capacitor assembled with N-doped porous carbon delivers excellent energy density (135 Wh kg-1 ) and power density (11 kW kg-1 ), showing certain practical value. This work provides an advanced system of sodium storage anode materials and broadens the possibility of MXene-based materials in the energy storage.

3.
Mikrochim Acta ; 190(1): 28, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520192

RESUMO

Carbon dots (CDs) have exhibited a promising application prospect in many fields because of their good fluorescence properties, biocompatibility, low toxicity, and easy functionalization. In order to improve their photoelectricity and stability, metal-organic frameworks (MOFs) can be used as host materials to provide ideal carriers for CDs to realize the multifunctional composites of CDs and MOFs (CDs@MOFs). At present, CDs@MOFs composites have shown tremendous application potential because they have various advantages of both CDs and MOFs. In this review, the synthesis methods of CDs@MOFs composites are firstly introduced. Then, the influence of the synergy between CDs and MOFs on the regulation of their structures and optical properties is highlighted. Furthermore, the recent application researches of CDs@MOFs composites in fluorescent probes, solid-state lighting, and photoelectrocatalysis are generalized. Finally, the critical issues, challenges, and solutions on their structure and property regulation and application are put forward, and their commercialization direction is also prospected.


Assuntos
Estruturas Metalorgânicas , Carbono , Fluorescência , Corantes Fluorescentes
4.
Nanotechnology ; 31(4): 045602, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31578001

RESUMO

Exfoliation of two-dimensional (2D) materials is an issue of concern among scientific researchers. This is because many solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone that are capable of better dispersion of 2D materials are relatively toxic and nonvolatile. This work focused on the reasonable design and mixture of two or three less toxic and volatile solvents based on Hansen solubility parameters theory to demonstrate the excellent exfoliation of 2D materials particularly reduced graphene oxide (rGO) and black phosphorus (BP). Polyvinylpyrrolidone (PVP) was introduced as a surfactant to functionalize rGO to help improve its dispersion. Results showed that PVP could effectively functionalize graphene. Few layers of rGO and BP were facilely achieved with 2-3 nm thickness from the use of the designed solvent mixtures, indicating the accomplishment of solvent mixtures in exfoliation/dispersion roles instead of the use of other toxic and nonvolatile solvents.

5.
Nanotechnology ; 30(8): 085406, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30523804

RESUMO

A one-step hydrothermal synthesis of nitrogen and silicon co-doped fluorescence carbon quantum dots (N,Si-CQDs), from citric acid monohydrate and silane coupling agent KH-792 with a high product yield (PY) of 52.56% and high quantum yield (QY) of 97.32%, was developed. This greatly improves both the PY and QY of CQDs and provides a new approach for a large-scale production of high-quality CQDs. Furthermore, N,Si-CQDs were employed as phosphors without dispersants to fabricate white light-emitting diodes (WLEDs) with the color coordinates at (0.29, 0.32). It is suggested that N,Si-CQDs have great potential as promising fluorescent materials to be applied in WLEDs.

6.
Phys Chem Chem Phys ; 21(5): 2734-2742, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30664141

RESUMO

In the present study, by cutting 6,6,12-graphyne along vertical and horizontal directions, two kinds of 6,6,12-graphyne nanodots (6,6,12-GYNDs) with different sizes are obtained. Using these 6,6,12-GYNDs, we theoretically designed two kinds of 6,6,12-graphyne-based molecular magnetic tunnel junctions (MMTJs) and investigated their spin-dependent transport properties. Depending on the orientation of the 6,6,12-GYNDs and the connection of the 6,6,12-GYNDs to electrodes, our results show that the two MMTJs have novel transport behaviors. Two different net spin currents can be obtained by tuning the spin configurations and the maximal order of magnitudes of tunneling magnetoresistance values of the two MMTJs reaches 106%. The high spin-filtering ratio and large tunneling magnetoresistance value provide high sensitivity for practical applications. Therefore, the spin-filtering and tunneling magnetoresistance effects enable 6,6,12-graphyne-based MMTJs to be used as spintronic devices.

7.
Biochemistry (Mosc) ; 81(6): 565-73, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27301284

RESUMO

Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that are able to make cells to uptake heavy metals from the environment. Molecular and functional characterization of this gene family improves understanding of the mechanisms underlying heavy metal tolerance in higher organisms. In this study, a cDNA clone, encoding 74-a.a. metallothionein type 1 protein (ZjMT), was isolated from the cDNA library of Ziziphus jujuba. At the N- and C-terminals of the deduced amino acid sequence of ZjMT, six cysteine residues were arranged in a CXCXXXCXCXXXCXC and CXCXXXCXCXXCXC structure, respectively, indicating that ZjMT is a type 1 MT. Quantitative PCR analysis of plants subjected to cadmium stress showed enhanced expression of ZjMT gene in Z. jujuba within 24 h upon Cd exposure. Escherichia coli cells expressing ZjMT exhibited enhanced metal tolerance and higher accumulation of metal ions compared with control cells. The results indicate that ZjMT contributes to the detoxification of metal ions and provides marked tolerance against metal stresses. Therefore, ZjMT may be a potential candidate for tolerance enhancement in vulnerable plants to heavy metal stress and E. coli cells containing the ZjMT gene may be applied to adsorb heavy metals in polluted wastewater.


Assuntos
Metalotioneína/metabolismo , Metais Pesados/metabolismo , Ziziphus/metabolismo , Sequência de Aminoácidos , Cádmio/metabolismo , Cádmio/toxicidade , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Metalotioneína/química , Metalotioneína/genética , Metais Pesados/toxicidade , Dados de Sequência Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Ziziphus/efeitos dos fármacos
8.
Luminescence ; 31(8): 1461-1467, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27062449

RESUMO

To investigate the influence of magnetic-thermosensitive carbon microspheres (MTCMSs) as a targeting drug carrier on serum albumins in vitro, in this study, bovine serum albumin (BSA) was chosen as a template protein to explore the interaction between serum proteins and MTCMSs. Fluorescence spectrophotometry, ultraviolet-visible absorbance (UV-vis) spectrophotometry and circular dichroism spectrometry were used to investigate the interaction between MTCMSs and BSA. Results indicate that BSA interacts with MTCMSs and the fluorescence intensity of BSA is quenched by 50% in a static quenching at 310 K when the concentration of MTCMSs reaches 30 mg/L. Thermodynamic parameters including free energy change (△Gθ ), enthalpy change (△Hθ ) and entropy change (△Sθ ) were calculated. The results (△Gθ < 0, △Hθ < 0 and △Sθ > 0) suggest a spontaneous process and the formation of a hydrogen bond between MTCMSs and BSA. UV-vis measurements reveal that the micro-environment of an amino acid residue is altered in the presence of MTCMSs. The α-helix content of BSA decreases by 4% and the ß-sheet content increases by 3.2% with increasing concentrations of MTCMSs to 30 mg/L, illustrating a change in the skeletal structure of BSA. These results demonstrate that MTCMSs as a targeting drug carrier impact the structure of serum albumins. This work provides not only a theoretical basis of BSA adsorption onto MTCMSs, but also an understanding of safe drug carriers in biomedicine. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Carbono/química , Magnetismo , Microesferas , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Temperatura , Adsorção , Animais , Bovinos , Termodinâmica
9.
J Transl Med ; 12: 33, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24495516

RESUMO

BACKGROUND: According to cancer-related microRNA (miRNA) expression microarray research available in public databases, miR-362 expression is elevated in gastric cancer. However, the expression and biological role of miR-362 in gastric progression remain unclear. METHODS: miR-362 expression levels in gastric cancer tissues and cell lines were determined using real-time PCR. The roles of miR-362, in promoting gastric cancer cell proliferation and apoptosis resistance, were assessed by different biological assays, such as colony assay, flow cytometry and TUNEL assay. The effect of miR-362 on NF-κB activation was investigated using the luciferase reporter assay, fluorescent immunostaining. RESULTS: MiR-362 overexpression induced cell proliferation, colony formation, and resistance to cisplatin-induced apoptosis in BGC-823 and SGC-7901 gastric cancer cells. MiR-362 increased NF-κB activity and relative mRNA expression of NF-κB-regulated genes, and induced nuclear translocation of p65. Expression of the tumor suppressor CYLD was inhibited by miR-362 in gastric cancer cells; miR-362 levels were inversely correlated with CYLD expression in gastric cancer tissue. MiR-362 downregulated CYLD expression by binding its 3' untranslated region. NF-κB activation was mechanistically associated with siRNA-mediated downregulation of CYLD. MiR-362 inhibitor reversed all the effects of miR-362. CONCLUSION: The results suggest that miR-362 plays an important role in repressing the tumor suppressor CYLD and present a novel mechanism of miRNA-mediated NF-κB activation in gastric cancer.


Assuntos
Apoptose/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Enzima Desubiquitinante CYLD , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Dados de Sequência Molecular , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/genética
10.
Phys Chem Chem Phys ; 16(5): 1902-8, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24336893

RESUMO

Using density functional theory and non-equilibrium Green's function method, we investigated the magnetic and transport properties of small organic titanium-benzene sandwich clusters TinBzn+1 (n = 1-3). The results show that TiBz2 is nonmagnetic while Ti2Bz3 and Ti3Bz4 are ferromagnetic, and our prediction is in agreement with experimental observation. The double exchange mechanism plays a key role in the ferromagnetism of larger clusters. With Ni as the two electrodes, significant spin-filter efficiency (SFE) and giant magnetoresistance (GMR) were found in the TinBzn+1 molecular junction. These transport properties could be controlled by cluster size, bias voltage or gate voltage. Specially, a sign-reversible GMR effect was observed in the Ti2Bz3 molecular junction. Finally, the microscopic mechanisms of SFE and GMR were suggested.

11.
Adv Healthc Mater ; : e2401513, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091058

RESUMO

Carbon dots (CDs) with good optical properties, biocompatibility, easy functionalization, and small size have attracted more and more attention and laid a good foundation for their applications in the biomedicine field. CDs emitted in near-infrared regions (NIR-CDs) can achieve high penetration depth imaging and produce high cytotoxic substance for disease treatment. Therefore, NIR-CDs are promising materials to realize high-quality imaging-guided diagnostic and therapeutic integration. This review first introduces the current mainstream synthesis methods of NIR-CDs by "top-down" and "bottom-up". Second, the luminescence modes of NIR-CDs are introduced, and the luminescence mechanisms based on carbon core state, surface state, molecular state, and crosslinking enhanced emission are summarized. Third, the applications and principles of NIR-CDs in imaging, drug delivery, and non-invasive therapeutics are introduced from a view of diagnosis and therapy. Finally, their prospects and challenges in biomedical and biotechnological applications are outlined.

12.
Burns ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39317533

RESUMO

Dressings play a crucial role in the management of burn wounds. In this study, cotton bandages were modified with poly (N-isopropylacrylamide)/graphite oxide/nano silver (PNIPAM/GO-Ag) hydrogel to obtain a novel dressing (PNIPAM/GO-Ag/COT). The healing effect of the PNIPAM/GO-Ag/COT dressing on deep second-degree burn wounds in rats and the changes of related inflammatory factors were explored and analyzed systematically. The deep second-degree burn model was established by the steam scald method in Sprague-Dawley (SD) rats. The granulation tissue, collagen deposition, the expression of tumor necrosis factor-α (TNF-α), and basic fibroblast growth factor (bFGF) in the wound were evaluated by means of HE staining, Masson staining, ELISA, and immunohistochemistry methods. The results showed that, compared with the blank group (rats without the dressing treatment), the PNIPAM/GO-Ag/COT dressing reduced the expression of TNF-α by approximately 18 % and promoted the bFGF expression in wound tissue. Compared to the control group (rats with the gauze treatment), the wound healing rate in the PNIPAM/GO-Ag/COT dressing group was 58 % on the 14th day, with an increase of 30 %. These results demonstrated that the PNIPAM/GO-Ag/COT dressing primarily promoted burn wound healing by reducing inflammatory reactions, promoting collagen deposition, and enhancing the expression of bFGF.

13.
Small Methods ; : e2301454, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38204209

RESUMO

Carbon quantum dots-based memristors (CQDMs) have emerged as a rising star in data storage and computing. The key constraint to their commercialization is memristance variability, which mainly arises from the disordered conductive paths. Doping methodology can optimize electron and ion transport to help construct a stable conductive mode. Herein, based on boron (B)-doped engineering strategy, three kinds of comparable quantum dots are synthesized, including carbon quantum dots (CQDs), a series of boron-doped CQDs (BCQDs) with different B contents, and boron quantum dots. The corresponding device performances highlight the superiority of BCQDs-based memristors, exhibiting a ternary flash-type memory behavior with longer retention time and more controllable memristance stability. The comprehensive analysis results, including device performance, functional layer morphology, and material simulated calculation, illustrate that the doped B elements can directionally guide the migration of aluminum ions by enhancing the capture of free electrons, resulting in ordered conductive filaments and stable ternary memory behavior. Finally, the conceptual applications of logic display and logic gate are discussed, indicating a bright prospect for BCQDs-based memristors. This work proves that modest B doping can optimize memristance property, establishing a theoretical foundation and template scheme for developing effective and stable CQDMs.

14.
Colloids Surf B Biointerfaces ; 234: 113721, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176338

RESUMO

Gadolinium-doped carbon dots (Gd-CDs), as a new class of nanomaterial, has a wide application prospect in targeted imaging and monitoring diagnosis and treatment of liver cancer because of their good fluorescence (FL)-magnetic resonance (MR) imaging properties. First, Gd-CDs were synthesized by hydrothermal method with gadodiamide as gadolinium source, citric acid as carbon source and silane coupling agent (KH-792) as coupling agent with FL quantum yield (QY) of 48.2%. Then, folic acid (FA), which is highly expressed in liver cancer, was used as a targeting component to modify Gd-CDs to obtain targeted imaging agent (Gd-CDs-FA). The results showed that Gd-CDs and Gd-CDs-FA have low cytotoxicity and good biocompatibility, and the targeting and selectivity of Gd-CDs-FA to HepG2 cells could be observed under confocal laser scanning microscope (CLSM). The T1 longitudinal relaxation rates (r1) of Gd-CDs and Gd-CDs-FA are 15.92 mM-1s-1 and 13.56 mM-1s-1, respectively. They showed good MR imaging ability in vitro and in vivo, and MR imaging in nude mice further proved the targeting imaging performance of Gd-CDs-FA. Therefore, Gd-CDs-FA with higher QY showed good FL-MR targeting imaging ability of liver cancer, which broke through the limitations of single molecular imaging probe in sensitivity and soft tissue resolution. This study provides a new idea for the application of Gd-CDs in FL and MR targeting imaging of liver cancer.


Assuntos
Neoplasias Hepáticas , Pontos Quânticos , Animais , Camundongos , Meios de Contraste , Fluorescência , Gadolínio , Carbono , Ácido Fólico , Camundongos Nus , Imageamento por Ressonância Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagem
15.
ACS Biomater Sci Eng ; 9(12): 6548-6566, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37945516

RESUMO

Theranostics technology that combines tumor diagnosis or monitoring with therapy is an important direction for the future development of tumor treatment. It takes advantage of efficiently observing tumor tissues, monitoring tumor treatment in real time, and significantly improving the cure efficiency. Magnetic carbon dots (CDs) are of wide interest as molecular imaging probes, drug carriers, photosensitizers, and radiosensitizers in the integration of tumor fluorescence/magnetic resonance bimodal diagnosis and treatment because of their small size, good optical stability, magnetic relaxation rate, and biocompatibility. This review first analyzes and compares the synthesis methods and physicochemical properties of magnetic CDs in recent years and then concludes their mechanism in tumor fluorescence/magnetic resonance bimodal imaging and therapy in details. Subsequently, the research progress of their application in tumor theranostics are summarized. Finally, the problems and challenges of magnetic CDs for development at this stage are prospected. This review provides new ideas for their controlled synthesis and application in efficient and precise therapy for tumors.


Assuntos
Neoplasias , Medicina de Precisão , Humanos , Carbono/uso terapêutico , Carbono/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
16.
J Colloid Interface Sci ; 630(Pt A): 573-585, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36270177

RESUMO

Producing a desirable adsorbent with strong affinity adsorption sites, excellent selectivity properties, and the ability to easily separate solid from liquid for the removal of phenol to a permissible level remains a great challenge in wastewater treatment. Herein, an N-doped magnetic carbon skeleton is presented as a porous adsorbent matrix. Importantly, the pore volume and specific surface area of the adsorbent matrix can be meticulously tuned by adjusting the thermal treatment condition, while dispersing and immobilizing the N fraction. This would ultimately result in an N-rich matrix structure with flexible mass transfer channel. The imprinted modification generates a large number of phenol-shaped geometrical cavities on the matrix. This helps to activate the phenol recognition "awareness" of N-active sites and greatly endows the adsorbent with selective adsorption property. Due to the advantageous balance between the hierarchical porous adsorbent matrix with uniformly distributed N-active sites and the imprinted polymer, the adsorbent has a superior adsorption capacity of 995.2 mg g-1 and selective recognition (Kd = 3.92, 3.78; HQ, PTBP) towards phenol. It outperforms previously reported adsorbents. In addition, its easy magnetic separation property makes the adsorbent to have excellent reusability. The adsorbent presents a promising potential for separating pollutants from wastewater and it sheds light on the design of an efficient comprehensive adsorbent.


Assuntos
Fenol , Águas Residuárias , Carbono , Polímeros/química , Porosidade , Adsorção , Fenóis , Fenômenos Magnéticos
17.
Int J Pharm ; 643: 123251, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37481098

RESUMO

Vascular endothelial growth factor (VEGF) is an important factor in the development of some diseases such as tumors, ocular neovascular disease and endometriosis. Inhibition of abnormal VEGF expression is one of the most effective means of treating these diseases. The resistance and side effects of currently used VEGF drugs limit their application. Herein, small interfering RNA for VEGF (siVEGF) are developed to inhibit VEGF expression at the genetic level by means of RNA interference. However, as a foreign substance entering the organism, siVEGF is prone to induce an immune response or mismatch, which adversely affects the organism. It is also subjected to enzymatic degradation and cell membrane blockage, which greatly reduces its therapeutic effect. Targeted siVEGF complexes are constructed by nanocarriers to avoid their clearance by the body and precisely target cells, exerting anti-vascular effects for the treatment of relevant diseases. In addition, some multifunctional complexes allow for the combination of siVEGF with other therapeutic tools to improve the treat efficiency of the disease. Therefore, this review describes the construction of the siVEGF complex, its mechanism of action, application in anti-blood therapy, and provides an outlook on its current problems and prospects.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Feminino , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Interferência de RNA , RNA Interferente Pequeno , Neoplasias/tratamento farmacológico , Neoplasias/genética
18.
ACS Appl Mater Interfaces ; 15(2): 2617-2629, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36596222

RESUMO

The fibrillization and deposition of the human islet amyloid polypeptide (hIAPP) are the pathological hallmark of type 2 diabetes mellitus (T2DM), and these insoluble fibrotic depositions of hIAPP are considered to strongly affect insulin secretion by inducing toxicity toward pancreatic islet ß-cells. The current strategy of preventing amyloid aggregation by nanoparticle-assisted inhibitors can only disassemble fibrotic amyloids into more toxic oligomers and/or protofibrils. Herein, for the first time, we propose a type of cysteine-derived chiral carbon quantum dot (CQD) that targets plasmin, a core natural fibrinolytic protease in humans. These CQDs can serve as fibrinolytic activity regulators for plasmin to cleave hIAPP into nontoxic polypeptides or into even smaller amino acid fragments, thus alleviating hIAPP's fibrotic amyloid-induced cytotoxicity. Our experiments indicate that chiral CQDs have opposing effects on plasmin activity. The l-CQDs promote the cleavage of hIAPP by enhancing plasmin activity at a promotion ratio of 23.2%, thus protecting ß-cells from amyloid-induced toxicity. In contrast, the resultant d-CQDs significantly inhibit proteolysis, decreasing plasmin activity by 31.5% under the same reaction conditions. Second harmonic generation (SHG) microscopic imaging is initially used to dynamically characterize hIAPP before and after proteolysis. The l-CQD promotion of plasmin activity thus provides a promising avenue for the hIAPP-targeted treatment of T2DM to treat low fibrinolytic activity, while the d-CQDs, as inhibitors of plasmin activity, may improve patient survival for hyperfibrinolytic conditions, such as those existing during surgeries and traumas.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Pontos Quânticos , Humanos , Amiloide/química , Carbono , Cisteína , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibrinolisina/química , Fibrinolisina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/efeitos dos fármacos , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico
19.
Biomater Sci ; 11(3): 854-872, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36515094

RESUMO

Inadequate angiogenesis in diabetic wound healing has been identified as one of the most difficult issues to treat. Copper ions (Cu2+) have been confirmed to stimulate angiogenesis; nevertheless, the rapid rise in non-physiological Cu2+ concentrations increases the danger of ion poisoning. For the first time, biotin was used to stabilize a copper-based metal-organic framework (HKUST-1) to change its hydrophobicity and achieve sustained release of Cu2+. The inability to offer a suitable area for the dynamic interaction between cells and growth factors still restricts the use of nanomaterials for the regeneration of injured skin in diabetes. Acellular dermal matrix (ADM) scaffolds are collagen fibers with natural spatial tissue that can create a biological "niche" for cell attachment and growth. In this study, biotin-stabilized HKUST-1 (B-HKUST-1) nanoparticles were modified with an ADM to form a novel scaffold (ADM-B-HKUST-1). Notably, Cu2+ and mesenchymal stem cells (MSCs) released by the composite scaffold may synergistically promote MSC adhesion, proliferation and endothelial differentiation by upregulating the expression of transforming growth factor-ß (TGF-ß), vascular endothelial growth factor (VEGF) and alpha-smooth muscle actin (α-SMA). Overall, the ADM-B-HKUST1 scaffold combines the dual advantages of the sustained release of Cu2+ and creating a biological "niche" can provide a potential strategy for enhancing angiogenesis and promoting diabetic wound healing.


Assuntos
Derme Acelular , Diabetes Mellitus , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/metabolismo , Biotina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cobre , Preparações de Ação Retardada/metabolismo , Alicerces Teciduais , Cicatrização , Diabetes Mellitus/metabolismo , Diferenciação Celular , Neovascularização Patológica/metabolismo
20.
Adv Sci (Weinh) ; 10(12): e2206386, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36815394

RESUMO

White-light-emitting carbon dots (WCDs) show innate advantages as phosphors in white light-emitting diodes (WLEDs). For WLEDs, the color rendering index (CRI) is the most important metric to evaluate its performance. Herein, WCDs are prepared by a facile one-step solvothermal reaction of trimellitic acid and o-phenylenediamine. It consists of four CDs identified by column chromatography as blue, green, yellow, red, and thus white light is a superposition of these four types of light. The mixture of the four CDs undergoes Förster resonance energy transfer to induce the generation of white light. The photoluminescence of WCDs originates from the synergistic effect of carbon core and surface states. Thereinto, the carbon core states dominate in RCDs, and the increase of amide contents and degree of conjugation promote the redshift of the emission spectra, which is further confirmed by theoretical calculations. In addition, a high CRI of 97 is achieved when the WCDs are used as phosphors to fabricate WLEDs, which is almost the highest value up to now. The multicolor LEDs can also be fabricated by using the four multicolor CDs as phosphors, respectively. This work provides a novel approach to explore the rapid preparation of low-cost, high-performance WCDs and CDs-based WLEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA