RESUMO
With the abuse of antibiotics, multidrug resistant strains continue to emerge and spread rapidly. Therefore, there is an urgent need to develop new antimicrobial drugs. As a highly conserved cell division protein in bacteria, filamenting temperature-sensitive mutant Z (FtsZ) has been identified as a potential antimicrobial target. This paper reviews the structure, function, and action mechanism of FtsZ and a variety of natural and synthetic compounds targeting FtsZ, including 3-MBA derivatives, taxane derivatives, cinnamaldehyde, curcumin, quinoline and quinazoline derivatives, aromatic compounds, purpurin, and totarol. From these studies, FtsZ has a clear supporting role in the field of antimicrobial drug discovery. The urgent need and interest of antibacterial drugs will contribute to the discovery of new clinical drugs targeting FtsZ.
RESUMO
AIMS: To estimate the effects of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) on proteinuria and oxidative stress expression in type 2 diabetes patients. MATERIALS AND METHODS: 68 patients with type 2 diabetes mellitus (T2DM) were divided into three groups according urinary albumin-to-creatinine ratio (UACR), including T2DM with non-albuminuria group (UACR < 30 mg/g), T2DM with microalbuminuria group (30 ≤ UACR ≤ 300 mg/g), T2DM with macroalbuminuria group (UACR>300 mg/g). They all received SGLT2 inhibitors (SGLT2i) treatment for 12 weeks. The expression of advanced glycation end products (AGEs) in plasma and 8-hydroxy-2-deoxyguanosine (8-OHdG) in urine were measured as indications of oxidative stress. The 24-hour urine samples were collected to measure the concentration of proteinuria and 8-OHdG before and after 12 weeks SGLT2i treatment. Plasma renin activity (PRA), angiotensin II (Ang II) and Aldosterone (ALD) were measured to evaluate renin angiotensin aldosterone system (RASS) levels. RESULTS: After 12 weeks SGLT2 inhibitors treatment, the median values of 24-hour proteinuria decreased in macroalbuminuria compared to baseline (970 vs. 821 mg/d, P = 0.006). The median values of AGEs and 8-OHdG decreased in microalbuminuria and macroalbuminuria groups when compared to baseline, AGEs (777 vs. 136 ug/ml, P = 0.003) and (755 vs. 210 ug/ml, P = 0.001), 8-OHdG (8.00 vs. 1.88 ng/ml, P = 0.001) and (11.18 vs. 1.90 ng/ml, P < 0.001), respectively. Partial correlations showed that 8-OHdG were relevant to the baseline 24-h proteinuria (r = 0.389, p = 0.001), the reduction of OHdG (Δ8-OHdG) were positively correlated with the decrease of 24-h proteinuria (Δ24-h proteinuria) after 12 weeks of SGLT2i treatment (r = 0.283, P = 0.031). There was no significant correlation between 24-h proteinuria and AGEs in baseline (r = -0.059, p = 0.640) as well as between ΔAGEs and Δ24-h proteinuria (r = 0.022, p = 0.872) after12 weeks of SGLT2i treatment in T2DM patients. CONCLUSIONS: SGLT2i may reduce proteinuria in diabetic nephropathy patients, potentially by inhibiting renal oxidative stress, but not through the AGEs pathway and does not induce RAAS activation. TRIAL REGISTRATION: This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.
RESUMO
To evaluate the effect of SGLT2 inhibitor (SGLT2i) on albuminuria, nephrin (NPH) and transforming-growth-factor-beta1 (TGF-ß1) levels in urine and low-grade inflammation in type 2 diabetes (T2D) patients. A randomized, blank-controlled clinical trial included 68 T2D patients and 10 controls. Based on the urinary albumin-to-creatinine ratio (UACR), 68 diabetic patients were stratified into three levels, UACR < 30 mg/g, UACR ⧠30 mg/g to ⦠300 mg/g and UACR Ë 300 mg/g, who were randomized (1:1:1) to receive SGLT2i treatment for 12 weeks. The concentrations of NPH and TGF-ß1 in urine were measured as indications of podocyte injury and renal fibrosis. Low-grade inflammation was assessed by the levels of IL-6, TNFα and hsCRP. After 12 weeks of SGLT2i treatment, the levels of UACR and NPH decreased, UTGF-ß1 increased in the T2D with microalbuminuria and macroalbuminuria groups, NPH (1.12 [0.59, 1.29] vs. 0.71 [0.41, 1.07] µg/ml, P = 0.022) and (1.29 [0.99, 1.96] vs. 0.93 [0.57, 1.31] µg/ml, P = 0.002), UTGF-ß1 (4.88 ± 1.31 vs. 7.27 ± 1.21 pg/ml, P < 0.001) and (4.30 ± 1.34 vs. 6.78 ± 2.59 pg/ml, P < 0.001), respectively. The changes in NPH were positively correlated with the UACR and negatively correlated with UTGF-ß1 in T2D with albuminuria. SGLT2i alleviate nephrin loss and enhance TGF-ß1 excretion in urine in T2DM with albuminuria. The anti-albuminuric effect of SGLT2i could be attributed to mitigating podocyte apoptosis and attenuating renal fibrosis.Trial registration This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.