Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(5): 146, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538920

RESUMO

Bacterial species within the Acinetobacter baumannii-calcoaceticus (Acb) complex are very similar and are difficult to discriminate. Misidentification of these species in human infection may lead to severe consequences in clinical settings. Therefore, it is important to accurately discriminate these pathogens within the Acb complex. Raman spectroscopy is a simple method that has been widely studied for bacterial identification with high similarities. In this study, we combined surfaced-enhanced Raman spectroscopy (SERS) with a set of machine learning algorithms for identifying species within the Acb complex. According to the results, the support vector machine (SVM) model achieved the best prediction accuracy at 98.33% with a fivefold cross-validation rate of 96.73%. Taken together, this study confirms that the SERS-SVM method provides a convenient way to discriminate between A. baumannii, Acinetobacter pittii, and Acinetobacter nosocomialis in the Acb complex, which shows an application potential for species identification of Acinetobacter baumannii-calcoaceticus complex in clinical settings in near future.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Acinetobacter , Humanos , Análise Espectral Raman , Infecções por Acinetobacter/microbiologia
2.
J Adv Res ; 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38531495

RESUMO

INTRODUCTION: Abusing antibiotic residues in the natural environment has become a severe public health and ecological environmental problem. The side effects of its biochemical and physiological consequences are severe. To avoid antibiotic contamination in water, implementing universal and rapid antibiotic residue detection technology is critical to maintaining antibiotic safety in aquatic environments. Surface-enhanced Raman spectroscopy (SERS) provides a powerful tool for identifying small molecular components with high sensitivity and selectivity. However, it remains a challenge to identify pure antibiotics from SERS spectra due to coexisting components in the mixture. OBJECTIVES: In this study, an intelligent analysis model for the SERS spectrum based on a deep learning algorithm was proposed for rapid identification of the antibiotic components in the mixture and quantitative determination of the ratios of these components. METHODS: We established a water environment system containing three antibiotic residues of ciprofloxacin, doxycycline, and levofloxacin. To facilitate qualitative and quantitative analysis of the SERS spectra antibiotic mixture datasets, we developed a computational framework integrating a convolutional neural network (CNN) and a non-negative elastic network (NN-EN) method. RESULTS: The experimental results demonstrate that the CNN model has a recognition accuracy of 98.68%, and the interpretation analysis of Shapley Additive exPlanations (SHAP) shows that our model can specifically focus on the characteristic peak distribution. In contrast, the NN-EN model can accurately quantify each component's ratio in the mixture. CONCLUSION: Integrating the SERS technique assisted by the CNN combined with the NN-EN model exhibits great potential for rapid identification and high-precision quantification of antibiotic residues in aquatic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA