Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 241: 113794, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35738107

RESUMO

The use of graphene-family materials modified by nanosized palladium (Pd/GFMs) has intensified rapidly in various fields; however, the effects of environmental factors (e.g., natural organic matter (NOM)) on the transformation and ecotoxicity of Pd/GFMs remain largely unknown. In this study, reduced graphene oxide modified by nanosized Pd (Pd/rGO) was incubated with humic acid (HA) under light irradiation for 56 d to explore the effects of NOM on the physicochemical transformations (e.g., defects, surface charges and dispersity) and biological toxicity (e.g., growth inhibition, oxidative stress and ultrastructural damage on algae cells) of Pd/GFMs. The results revealed that HA increased the defects and dispersity of Pd/rGO. Growth inhibition, damage to cellular ultrastructures, and oxidative stress in microalgae cells were induced by Pd/rGO, and corresponding defense responses (e.g., superoxide dismutase, peroxidase and glutathione) were activated. HA diminished the above defense responses in microalgae triggered by Pd/rGO by regulating GSH metabolism and the alanine biosynthesis pathway. In the presence of HA, cell wall damage (i.e., hole formation) caused by exposure to Pd/rGO was restored, and the plasmolysis area was reduced by 28.6 %. In addition, growth inhibition, lipid peroxidation, loss of mitochondrial membrane potential and ROS formation induced by 1.0 mg/L MoS2NPs were decreased by 1.4-65.6 %, 13.9-26.1 %, 21.8-58.3 % and 9.6-16.1 %, respectively. These findings highlight the need to consider the effects of HA on the environmental transformation and biological toxicity of Pd/GFMs, which presents significant implications for the management of Pd/GFMs.


Assuntos
Grafite , Microalgas , Grafite/química , Grafite/toxicidade , Substâncias Húmicas , Paládio/toxicidade
2.
Water Res ; 233: 119815, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881974

RESUMO

Algae dominate primary production in groundwater and oceans and play a critical role in global carbon dioxide fixation and climate change but are threatened by ongoing global warming events (such as heatwaves) and increasing microplastic (MP) pollution. However, whether and how ecologically important phytoplankton respond to the combined effects of warming and MPs remain poorly understood. We thus investigated the combined effects of these factors on carbon and nitrogen storage and the mechanisms underlying the alterations in the physiological performance of a model diatom, Phaeodactylum tricornutum, exposed to a warming stressor (25 °C compared with 21 °C) and polystyrene MP acclimation. Although warmer conditions decreased the cell viability, the diatoms subjected to the synergistic effects of MPs and warming showed significant increases in the growth rate (1.10-fold) and nitrogen uptake rate (1.26-fold). Metabolomics and transcriptomic analyses revealed that MPs and warming mainly promoted fatty acid metabolism, the urea cycle, glutamine and glutamate production, and the tricarboxylic acid (TCA) cycle due to an increased level of 2-oxoglutarate, which is the hub of carbon and nitrogen metabolism and accounts for the acquisition and utilization of carbon and nitrogen. Our findings emphasize the nonnegligible effects of MPs and HWs on the algal carbon and nitrogen cycles in waters.


Assuntos
Diatomáceas , Plásticos , Microplásticos , Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Diatomáceas/metabolismo
3.
Sci Total Environ ; 876: 162853, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36924955

RESUMO

Polystyrene (PS) often found in the ocean is one of the most commonly used plastic polymers in the world and can exist in different particle sizes. In particular, PS degrades relatively faster and widely accumulates at the nanoscale. Therefore, the penetration is strong and it is easy to enter the body and cause adverse effects. However, the persistence or recovery of their toxicity remains largely unclear. Here, we designed two subexperiments (exposure and recovery experiments) and investigated the persistence of the toxicity of polystyrene (PS) NPs at a wide concentration range (0.01-10 mg/L) to diatoms (Phaeodactylum tricornutum). PS-NPs significantly inhibited algal growth and clearly wrinkled the surfaces of cells, membrane permeability was significantly increased, and the steady-state state of cell redox and mitochondrial membrane potential was disturbed. However, in the recovery experiment, the increased membrane permeability was observed to persist, but the induced oxidative damage was reversible, and the absorbed NPs could be excreted. Integrated omics techniques (metabolomics and transcriptomics) revealed that PS-NPs significantly disrupts cell metabolism, including disturbances in fatty acid biosynthesis and enhanced biosynthesis of phenylalanine, tyrosine, and tryptophan. Inhibition of fatty acid, amino acid, energy and carbohydrate metabolism and disturbance of the antioxidant system contribute to the persistence of toxicity. These findings highlight the phenomena and mechanisms of the persistence of phytotoxicity and are critical to the accurate assessment of NPs.


Assuntos
Diatomáceas , Nanopartículas , Poluentes Químicos da Água , Poliestirenos/metabolismo , Microplásticos/toxicidade , Nanopartículas/química , Poluentes Químicos da Água/toxicidade , Plásticos , Diatomáceas/metabolismo
4.
J Hazard Mater ; 452: 131340, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027913

RESUMO

Microplastic pollution and heat waves, as damaging aspects of human activities, have been found to affect crop production and nitrogen (N) cycling in agroecosystems. However, the impacts of the combination of heat waves and microplastics on crop production and quality have not been analyzed. We found that heat waves or microplastics alone had slight effects on rice physiological parameters and soil microbial communities. However, under heat wave conditions, the typical low-density polyethylene (LDPE) and polylactic acid (PLA) microplastics decreased the rice yields by 32.1% and 32.9%, decreased the grain protein level by 4.5% and 2.8%, and decreased the lysine level by 91.1% and 63.6%, respectively. In the presence of heat waves, microplastics increased the allocation and assimilation of N in roots and stems but decreased those in leaves, which resulted in a reduction in photosynthesis. In soil, the concurrence of microplastics and heat waves induced the leaching of microplastics, which resulted in decreased microbial N functionality and disturbed N metabolism. In summary, heat waves amplified the disturbance induced by microplastics on the agroecosystem N cycle and therefore exacerbated the decreases in rice yield and nutrients induced by microplastics, which indicates that the environmental and food risks of microplastics deserve to be reconsidered.


Assuntos
Microplásticos , Oryza , Humanos , Microplásticos/toxicidade , Plásticos , Temperatura Alta , Solo , Ciclo do Nitrogênio , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA