Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 247: 114233, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334342

RESUMO

Nickel compounds, an international carcinogen in the industrial environment, increased the risk of lung inflammation even lung cancer in Ni refinery workers. Metformin has displayed the intense anti-inflammation and anti-cancer properties through regulating pyroptosis. This study was designed to explore whether Nickel-refining fumes (NiRF) can induce cell pyroptosis and how AMPK/CREB/Nrf2 mediated the protection afforded by metformin against Ni particles-induced lung impairment. Our results represented that Ni fumes exposure evoked pyroptosis via GOLPH3 and induced oxidative stress, while, metformin treatment alleviated Ni particles-mediated above changes. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) involved in the protection of metformin, and the deficiency of Nrf2 attenuated the beneficial protection. We also determined that Nrf2 was a downstream molecule of AMPK/CREB pathway. Furthermore, male C57BL/6 mice were administered with Ni at a dose of 2 mg/kg by non-exposed endotracheal instillation and metformin (100, 200 and 300 mg/kg) via oral gavage for 4 weeks. The results indicated that NiRF promoted GOLPH3 and pyroptosis by stimulating NLRP3, caspase-1, N-GSDMD, IL-18 and IL-1ß expression. However, various doses of metformin reduced GOLPH3 and the above protein levels of pyroptosis, also improved AMPK/CREB/Nrf2 expression. In summary, we found that metformin suppressed NiRF-connected GOLPH3-prompted pyroptosis via AMPK/CREB/Nrf2 signaling pathway to confer pulmonary protection.


Assuntos
Neoplasias Pulmonares , Metformina , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP , Gases , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Níquel/toxicidade , Piroptose
2.
Ecotoxicol Environ Saf ; 236: 113461, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35405526

RESUMO

Nickel (Ni) compounds is recognized industrial carcinogen, which could increase the risk of lung cancer in Ni refineries workers. However, the underlying carcinogenic mechanism still remains to elucidate. Metformin has shown the anticancer properties through suppressing aerobic glycolysis. In the present study, we evaluated the effect of Ni-refining fumes exposure on aerobic glycolysis and the role of AMPK/GOLPH3, as well as how metformin alleviated nickel-induced aerobic glycolysis in vitro and vivo. Firstly, Beas-2B cells were exposed to different concentrations of Ni-refining fumes and pretreated with metformin (activation of AMPK), compound C (AMPK inhibitor) in vitro. Our findings indicated that Ni fumes expose evoked aerobic glycolysis by AMPK/GOLPH3, while metformin attenuated Ni particles-promoted GOLPH3-mediated aerobic glycolysis by p-AMPK expression increase. Then Mito-TEMPT (a mitochondria-targeted antioxidant) and lipopolysaccharide (LPS, ROS activator) were pretreated to affect ROS production in Beas-2B cells. Ni-induced ROS prevented AMPK activation. Moreover, C57BL/6 mice were exposed to 2 mg/kg Ni by non-exposed endotracheal instillation and metformin (100, 200 and 300 mg/kg) via oral gavage for 4 weeks. The effects of AMPK/GOLPH3 axis on Ni-induced aerobic glycolysis were assessed. The results indicated that metformin decreased the protein levels of GOLPH3, LDHA, HK2, MCT-4 and improved p-AMPK expression. Thus, our findings demonstrated metformin antagonized Ni-refining fumes-caused aerobic glycolysis via AMPK/GOLPH3.


Assuntos
Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicólise , Lipopolissacarídeos/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Níquel/toxicidade , Espécies Reativas de Oxigênio/metabolismo
3.
Yao Xue Xue Bao ; 43(2): 118-22, 2008 Feb.
Artigo em Zh | MEDLINE | ID: mdl-18507335

RESUMO

Human immunodeficiency virus (HIV) is a retrovirus, belongs to Lentiviridae family. As long as viral genetic material entering into host cytoplasm, double-strand DNAs synthesis occurs which is catalyzed by reverse transcriptase (RT) with viral plus-strand RNA as template. This reverse transcription is a key link of HIV-1 life cycle and an important target for anti-HIV drug development. The process of reverse transcription can be divided into several steps: formation of minus-strand strong-stop DNA; the first translocation; initiation of plus-strand DNA synthesis; and, the second translocation and the completion of both strands. These steps can be detected individually by using polymerase chain reaction (PCR) according to the amplified products on the region of R/U5, U3, U5/PBS and the sequence between LTR and Gag. In this review, we summarize the principle for detecting stages of HIV-1 reverse transcription by using PCR.


Assuntos
DNA Viral/biossíntese , Transcriptase Reversa do HIV/genética , HIV-1/genética , Reação em Cadeia da Polimerase/métodos , Transcrição Reversa , Replicação do DNA/genética , DNA Viral/genética , Transcriptase Reversa do HIV/metabolismo , HIV-1/metabolismo , RNA Viral/genética
4.
Pharmacol Biochem Behav ; 86(1): 1-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16806445

RESUMO

This study investigated the effect of MK-801 and ketamine, N-methyl-D-aspartate (NMDA) receptor antagonists which can induce schizophrenic symptoms and have neurotoxicity in human and animals, on hydroxyl radical (*OH) generation in the posterior cingulate and retrosplenial (PC/RS) cortex of free-moving mice using the salicylic acid trapping technique. MK-801 (0.6 mg/kg) or ketamine (50 mg/kg) acute administration significantly increased *OH levels in mouse PC/RS cortex. The basal *OH levels after MK-801 and ketamine administrations for 7 consecutive days were significantly increased compared with the naive basal levels. MK-801 (0.6 mg/kg) or ketamine (50 mg/kg) challenge after chronic administration further significantly increased dialysate levels of *OH. Our study also found that the release of *OH was secondary to stereotyped behavior, and the intensity of stereotyped behavior induced by MK-801 was more than that induced by ketamine. The results suggested that NMDA receptor antagonists participate in the generation of *OH in the PC/RS cortex of mouse, and oxidative stress, derived from the formation of free radicals, might play an important role in the pathophysiology of these two models of schizophrenia.


Assuntos
Córtex Cerebral/metabolismo , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Giro do Cíngulo/metabolismo , Radical Hidroxila/metabolismo , Ketamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Catecóis/metabolismo , Córtex Cerebral/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Hidroxibenzoatos , Masculino , Camundongos , Microdiálise , Comportamento Estereotipado/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA