Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Appl Acarol ; 89(1): 45-60, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36635606

RESUMO

Exogenous application of methyl jasmonate (MeJA) could activate plant defense response against the two-spotted spider mite (TSSM), Tetranychus urticae Koch, in different plants. However, whether MeJA can also serve as an elicitor in cassava (Manihot esculenta Crantz) remains unknown. In this study, induced defense responses were investigated in TSSM-resistant cassava variety C1115 and TSSM-susceptible cassava variety KU50 when applied with MeJA. The performance of TSSM feeding on cassava plants that were pre-treated with various concentrations of MeJA was first evaluated. Subsequently, the activities of antioxidative enzymes (superoxide dismutase and catalase), detoxification enzymes (glutathione S-transferase, cytochrome P450 and carboxylesterase) and digestive enzymes (protease, amylase and invertase) in TSSM were analyzed at days 1, 2, 4 and 8 post-feeding. The results showed that MeJA treatment can induce cassava defense responses to TSSM in terms of reducing egg production and adult longevity as well as slowing development and prolonging the egg stage. Noticeably, C1115 exhibited stronger inhibition of TSSM development and reproduction than KU50. In addition, the activities of all the tested enzymes were induced in both C1115 and KU50, the most in C1115. We conclude that exogenous methyl jasmonate can induce cassava defense responses and enhance resistance to TSSM.


Assuntos
Manihot , Tetranychidae , Animais , Manihot/fisiologia , Tetranychidae/fisiologia , Antioxidantes , Acetatos/farmacologia , Verduras
2.
PLoS One ; 18(4): e0282100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079564

RESUMO

The Arabidopsis thaliana ASYMMETRIC LEAVES2 (AS2) gene is responsible for the development of flat, symmetric, and extended leaf laminae and their veins. The AS2 gene belongs to the plant-specific AS2-LIKE/LATERAL ORGAN BOUNDARIES (LOB)-domain (ASL/LBD), which consists of 42 proteins in Arabidopsis with a conserved amino-terminal domain known as the AS2/LOB domain, and a variable carboxyl-terminal region. AS2/LOB domain consists of an amino-terminal (N-terminal) that contains a cysteine repeat (the C-motif), a conserved glycine residue, and a leucine-zipper-like. AS2/LOB domain has been characterised in plants such as A. thaliana, Zea mays, and Oryza sativum. Nevertheless, it remains uncharacterised in cassava (Manihot esculenta). Characterisation and identification of cassava ASL/LBD genes using the computational algorithms, hidden Markov model profiles (PF03195), determined 55 ASL/LBD genes (MeASLBD1 to MeASLBD55). The gene structure and motif composition were conserved in MeASLBDs, while the expression profiles of these genes were highly diverse, implying that they are associated with diverse functions. Weighted gene co-expression network analysis (WGCNA) of target genes and promoter analysis suggest that these MeASLBDs may be involved in hormone and stress responses. Furthermore, the analysis of cis-regulatory elements in promoter regions suggested that MeASLBDs may be involved in the plant phytohormone signal response. The transcriptome data of cassava under biotic and abiotic stresses revealed that MeASLBD46 and MeASLBD47 greatly respond to disease and drought. The MeASLBD47 gene was selected for functional analysis. The result indicated that MeASLBD47 significantly mitigated the virulence of cassava bacterial blight (XamCHN11) through Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) and Virus-induced gene silencing (VIGS). These findings provided a comprehensive analysis of ASL/LBD genes and laid the groundwork for future research to understand ASL/LBD genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Manihot , Manihot/genética , Manihot/metabolismo , Estudo de Associação Genômica Ampla , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Zhen Ci Yan Jiu ; 48(6): 525-32, 2023 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-37385782

RESUMO

OBJECTIVE: To observe the effect of moxibustion preconditioning on learning-memory ability, Toll like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB) signal pathway related proteins and microglia in rats with Alzheimer's disease (AD), so as to explore its possible mechanisms underlying improvement of AD. METHODS: Male SD rats were randomly divided into normal, sham operation, AD model and pre-moxibustion groups, with 9 rats in each group. Moxibustion was applied to "Baihui"(GV20), "Shenshu"(BL23) and "Zusanli"(ST36) for 15 min, once daily, 6 days as a course of treatment for 3 courses. At the end of moxibustion, the AD model was established by injection of Aß25-35 aggregation solution into the bilateral hippocampus. The sham operation group was only injected with the same amount of 0.9% Nacl solution. The spatial learning-memory ability of rats was detected by Morris water maze test, the ultrastructure of hippocampal neurons was observed by transmission electron microscope (TEM). The histopathological changes of hippocampus tissue were observed by HE staining, and the protein expression levels of TLR4 and NF-κB p65 in the hippocampus detected by Western blot, and the positive expressions of Iba-1, CD80 and CD206 in the hippocampal CA1 region were detected by immunofluorescence labeling. The contents of inflammatory factors IL-1ß, TNF-α and IL-10 in the hippocampus were measured by ELISA. RESULTS: Compared with the sham operation group, the escape latency was significantly increased (P<0.01), and the number of platform quadrant crossing times was decreased (P<0.01) in the model group. In comparison with the model group, the increased escape latency and the decreased platform quadrant crossing times were reversed in the pre-moxibustion group (P<0.01). TEM and light microscope observation showed loose arrangement of cells, enlarged cell space, degeneration, swelling and deformation of hippocampal neurons, rupture of membranes of a large number of cells, reduction of mitochondria, dilation of endoplasmic reticulum, and matrix vacuoles, uneven distribution of organelles and cytoplasm, and being difficult in distinguishing the nuclear cytoplasm in the model group, which was relatively milder in the pre-moxibustion group. The expression levels of hippocampal NF-κB p65 and TLR4, the mean immunofluorescence density of Iba-1 and CD80, as well as the contents of IL-1ß and TNF-α in hippocampal CA1 region were significantly increased in the model group than those in the sham operation group (P<0.01), and obviously decreased in the pre-moxibustion group than those in the model group (P<0.05, P<0.01). Whereas the expression of CD206 and the content of IL-10 were evidently decreased in the model group than those in the sham operation group (P<0.01), and strikingly increased in the pre-moxibustion group than those in the model group (P<0.01). No significant differences were found between the sham operation group and the normal group in all the indexes mention above (P>0.05). CONCLUSION: Pre-moxibustion at GV20, BL23 and ST36 can improve learning-memory ability in AD rats, which may be associated with its functions in promoting the polarization of microglia from M1 to M2 and reducing the neuroinflammatory response by way of TLR4/NF-κB signaling pathway.


Assuntos
Doença de Alzheimer , Moxibustão , Masculino , Animais , Ratos , Ratos Sprague-Dawley , NF-kappa B/genética , Interleucina-10 , Microglia , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa , Transdução de Sinais
4.
Front Plant Sci ; 13: 1067695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684737

RESUMO

Introduction: The two-spotted spider mite (TSSM) is a devastating pest of cassava production in China. Lignin is considered as an important defensive barrier against pests and diseases, several genes participate in lignin biosynthesis, however, how these genes modulate lignin accumulation in cassava and shape TSSM-resistance is largely unknown. Methods: To fill this knowledge gap, while under TSSM infestation, the cassava lignin biosynthesis related genes were subjected to expression pattern analysis followed by family identification, and genes with significant induction were used for further function exploration. Results: Most genes involved in lignin biosynthesis were up-regulated when the mite-resistant cassava cultivars were infested by TSSM, noticeably, the MePAL gene presented the most vigorous induction among these genes. Therefore, we paid more attention to dissect the function of MePAL gene during cassava-TSSM interaction. Gene family identification showed that there are 6 MePAL members identified in cassava genome, further phylogenetic analysis, gene duplication, cis-elements and conserved motif prediction speculated that these genes may probably contribute to biotic stress responses in cassava. The transcription profile of the 6 MePAL genes in TSSM-resistant cassava cultivar SC9 indicated a universal up-regulation pattern. To further elucidate the potential correlation between MePAL expression and TSSM-resistance, the most strongly induced gene MePAL6 were silenced using virus-induced gene silencing (VIGS) assay, we found that silencing of MePAL6 in SC9 not only simultaneously suppressed the expression of other lignin biosynthesis genes such as 4-coumarate--CoA ligase (4CL), hydroxycinnamoyltransferase (HCT) and cinnamoyl-CoA reductase (CCR), but also resulted in decrease of lignin content. Ultimately, the suppression of MePAL6 in SC9 can lead to significant deterioration of TSSM-resistance. Discussion: This study accurately identified MePAL6 as critical genes in conferring cassava resistance to TSSM, which could be considered as promising marker gene for evaluating cassava resistance to insect pest.

5.
Front Plant Sci ; 13: 1054909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570903

RESUMO

Introduction: Utilization of resistant germplasm is considered as an effective, economical and eco-friendly strategy for cassava pest management. Tetranychus urticae, known as the two-spotted spider mite (TSSM), is a devastating pest in Asian cassava planting countries as well as in China. However, the resistant levels of abundant cassava germplasms to TSSM remains largely unknown. Methods: To fill this knowledge gap, we conducted screening of 202 cassava germplasm for resistance to TSSM in China based on the classification of mite damage phenotype, under both greenhouse and field conditions. Results: The three rounds of large-scale greenhouse experiments had identified two highly resistant (HR) varieties (C1115 and MIANDIAN), five resistant (R) varieties (SC5, SC9, SC15, COLUMBIA-4D and LIMIN) and five highly susceptible (HS) varieties (KU50, BREAD, SC205, TMS60444 and BRA900), besides, these 'HR' and 'R' varieties would significantly repress the normal development and reproduction of TSSM. In addition, the 12 cassava varieties selected from the greenhouse screening were further subjected to consecutive five years of field validation at Danzhou, Wuming and Baoshan. The seven resistant varieties not only exhibited stable TSSM-resistance performance across the three field environments, but also possessed the same resistant levels as the greenhouse identification, while the resistant varieties SC5 was an exception, which was identified as moderate resistant in Baoshan, indicating the variety-environment interaction may affect its resistance. Furthermore, regional yield estimation suggested that the higher the resistance level was, the better capacity in reducing the yield losses. Discussion: This study demonstrated that the TSSM-resistant varieties could be considered as ideal materials in mite control or in future breeding programme of mite-resistant cassava plant.

6.
Front Plant Sci ; 13: 994866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061805

RESUMO

The two-spotted spider mite (TSSM) is a destructive cassava pest. Intensive demonstration of resistance mechanism greatly facilitates the creation of TSSM-resistant cassava germplasm. Gene to metabolite network plays a crucial role in modulating plant resistance, but little is known about the genes and related metabolites which are responsible for cassava resistance to TSSM. Here, a highly resistant (HR) and a highly susceptible (HS) cassava cultivar were used, integrative and comparative transcriptomic and metabolomic analyses between these two cultivars after TSSM infestation revealed that several genes and metabolites were closely related and significantly different in abundance. In particular, the expression of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes showed a high positive correlation with most of the metabolites in the tannin biosynthesis pathway. Furthermore, transgenic cassava lines overexpressing either of the genes elevated tannin concentrations and conferred cassava resistance to TSSM. Additionally, different forms of tannins possessed distinct bioactivity on TSSM, of which total condensed tannins (LC50 = 375.68 mg/l) showed maximum lethal effects followed by procyanidin B1 (LC50 = 3537.10 mg/l). This study accurately targets LAR, ANR and specific tannin compounds as critical genes and metabolites in shaping cassava resistance to TSSM, which could be considered as biomarkers for evaluation and creation of pest-resistant cassava germplasm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA