Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Commun Signal ; 20(1): 108, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850719

RESUMO

BACKGROUND: Macrophage phenotypes switch from proinflammatory (M1) to anti-inflammatory (M2) following myocardial injury. Implanted stem cells (e.g., induced pluripotent stem cells (iPSCs)) for cardiomyogenesis will inevitably contact the inflammatory environment at the myocardial infarction site. To understand how the macrophages affect the behavior of iPSCs, therefore, improve the therapeutic efficacy, we generated three macrophage subtypes and assessed their effects on the proliferation, cardiac differentiation, and maturation of iPSCs. METHODS: M0, M1, and M2 macrophages were polarized using cytokines, and their properties were confirmed by the expression of specific markers using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence. The effects of macrophages on iPSCs were studied using Transwell co-culture models. The proliferative ability of iPSCs was investigated by cell counting and CCK-8 assays. The cardiac differentiation ability of iPSCs was determined by the cardiomyocyte (CM) yield. The maturation of CM was analyzed by the expression of cardiac-specific genes using RT-qPCR, the sarcomere organization using immunofluorescence, and the mitochondrial function using oxidative respiration analysis. RESULTS: The data showed that the co-culture of iPSCs with M0, M1, or M2 macrophages significantly decreased iPSCs' proliferative ability. M2 macrophages did not affect the CM yield during the cardiac differentiation of iPSCs. Still, they promoted the maturation of CM by improving sarcomeric structures, increasing contractile- and ion transport-associated gene expression, and enhancing mitochondrial respiration. M0 macrophages did not significantly affect the cardiomyogenesis ability of iPSCs during co-culture. In contrast, co-culture with M1 macrophages significantly reduced the cardiac differentiation and maturation of iPSCs. CONCLUSIONS: M1- or M2-polarized macrophages play critical roles in the proliferation, cardiac differentiation, and maturation of iPSCs, providing knowledge to improve the outcomes of stem cell regeneration therapy. Video abstract.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo
2.
Iran J Basic Med Sci ; 27(4): 453-460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419889

RESUMO

Objectives: Dexmedetomidine (Dex) is a potent α2-adrenergic receptor(α2-AR) agonist that has been shown to protect against sepsis-induced lung injury, however, the underlying mechanisms of this protection are not fully understood. Autophagy and the Smad2/3 signaling pathway play important roles in sepsis-induced lung injury, but the relationship between Dex and Smad2/3 is not clear. This study aimed to investigate the role of autophagy and the Smad2/3 signaling pathway in Dex-mediated treatment of sepsis-induced lung injury. Sepsis was performed using cecal ligation and puncture (CLP) in C57BL/6J mice. Materials and Methods: Mice were randomly assigned to four groups (n=6 per group): sham, CLP, CLP-Dex, and CLP-Dex-YOH, Yohimbine hydrochloride (YOH) is an α2-AR blocker. The cecum was carefully separated to avoid blood vessel damage and was identified and punctured twice with an 18-gauge needle. The pathological changes, inflammatory factor levels, oxidative stress, autophagy, Smad2/3 signaling pathway-related protein levels in lung tissues, and the activity of superoxide dismutase (SOD) and malonaldehyde (MDA) in the serum were measured. Results: CLP-induced lung injury was reflected by increased levels of inflammatory cytokines, apoptosis, and oxidative stress, along with an increase in the expression of autophagy and Smad2/3 signaling pathway-related proteins. Dex could reverse these changes and confer a protective effect on the lung during sepsis. However, the administration of YOH significantly reduced the positive effects of Dex in mice with sepsis. Conclusion: Dex exerts its beneficial effects against sepsis-induced lung injury through the regulation of autophagy and the Smad2/3 signaling pathway.

3.
Heliyon ; 9(1): e12666, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685422

RESUMO

Background: The effects of realgar against non-small cell lung cancer (NSCLC) have been massively studied, but the direct therapeutic targets of realgar remain unclear. This study aimed to identify the molecular targets of realgar against NSCLC and explore their therapeutic mechanisms based on a network pharmacology approach and experimental validations. Methods: The BATMAN-TCM and Digsee databases were used to predict realgar targets and NSCLC-related genes, respectively. A protein-protein interaction network was constructed for each gene set, and the overlapping genes were identified as potential targets of realgar against NSCLC. The correlation between potential targets and NSCLC was analyzed using The Cancer Genome Atlas and International Cancer Genome Consortium databases, and the key target was validated by in-silico and in-vitro experiments. Results: Twenty-three overlapping genes, including xanthine oxidase (XO), were identified as potential targets of realgar against NSCLC. XO was selected as the key target for validation, as it was found to be upregulated in NSCLC tumor tissue, which correlated with poor overall survival. A possible interaction between realgar and XO was revealed by molecular docking which was further validated experimentally. Realgar treatment suppressed the activity of XO in NSCLC cells, as demonstrated by the unchanged XO protein levels. Finally, the mechanism of action of XO as a target against NSCLC through the cell-cell junction organization pathway was investigated. Conclusions: Overall, this study proposes a potential molecular mechanism illustrating that XO is a target of realgar against NSCLC and highlights the usefulness of XO as a therapeutic target for NSCLC.

4.
Pharmaceutics ; 15(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36986715

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in the world. It is urgent to search for safe and effective therapies to address the CRC crisis. The siRNA-based RNA interference targeted silencing of PD-L1 has extensive potential in CRC treatment but is limited by the lack of efficient delivery vectors. In this work, the novel cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs)/siPD-L1 co-delivery vectors AuNRs@MS/CpG ODN@PEG-bPEI (ASCP) were successfully prepared by two-step surface modification of CpG ODNs-loading and polyethylene glycol-branched polyethyleneimine-coating around mesoporous silica-coated gold nanorods. ASCP promoted dendritic cells (DCs) maturation by delivering CpG ODNs, exhibiting excellent biosafety. Next, mild photothermal therapy (MPTT) mediated by ASCP killed tumor cells and released tumor-associated antigens, further promoting DC maturation. Furthermore, ASCP exhibited mild photothermal heating-enhanced performance as gene vectors, resulting in an increased PD-L1 gene silencing effect. Enhanced DCs maturity and enhanced PD-L1 gene silencing significantly promoted the anti-tumor immune response. Finally, the combination of MPTT and mild photothermal heating-enhanced gene/immunotherapy effectively killed MC38 cells, leading to strong inhibition of CRC. Overall, this work provided new insights into the design of mild photothermal/gene/immune synergies for tumor therapy and may contribute to translational nanomedicine for CRC treatment.

5.
Adv Sci (Weinh) ; 7(24): 2001191, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344115

RESUMO

Conventional chemotherapy and photothermal therapy (PTT) face many major challenges, including systemic toxicity, low bioavailability, ineffective tissue penetration, chemotherapy/hyperthermia-induced inflammation, and tumor angiogenesis. A versatile nanomedicine offers an exciting opportunity to circumvent the abovementioned limitations for their successful translation into clinical practice. Here, a promising biophotonic nanoplatform is developed based on the zirconium carbide (ZrC) nanosheet as a deep PTT-photosensitizer and on-demand designed anticancer prodrug SN38-Nif, which is released and activated by photothermia and tumor-overexpressed esterase. In vitro and in vivo experimental evidence shows the potent anticancer effects of the integrated ZrC@prodrug biophotonic nanoplatform by specifically targeting malignant cells, chemotherapy/hyperthermia-induced tumor inflammation, and angiogenesis. In mouse models, the ZrC@prodrug system markedly inhibits tumor recurrence, metastasis, inflammation and angiogenesis. The findings unravel a promising biophotonic strategy for precision treatment of cancer.

6.
Mol Med Rep ; 17(2): 2509-2514, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207200

RESUMO

Previous studies have suggested that the B­cell lymphoma 2 (Bcl­2) inhibitor, TW37, may induce apoptosis of the non­small cell lung cancer cell line, H1975/epidermal growth factor receptor­tyrosine kinase inhibitor (EGFR­TKI), which exhibits secondary resistance to EGFR­TKI. However, the effects of TW37 on H1975/EGFR­TKI cells remain unclear. The aim of the present study was to investigate the effects of TW37 on the growth of H1975/EGFR­TKI cells and explore the underlying mechanisms. An in vitro study was performed, whereby H1975/EGFR­TKI cells were treated with serially increasing concentrations of TW37. MTT, flow cytometry, migration and transwell invasion assays were preformed to investigate the proliferation, apoptosis, migration and invasion of H1975/EGFR­TKI cells, respectively. In addition, reverse transcription­polymerase chain reaction and western blot analyses were performed to detect the mRNA and protein expression levels of apoptosis­associated factors, respectively. An enzyme­linked immunosorbent assay was performed to detect phosphatidylinositol [3,4,5] tris­phosphate (PIP3) expression. The results suggested that the mRNA and protein expression levels of Bcl­2 were significantly decreased in TW37­treated cells when compared with the untreated control group. Following treatment with TW37, the proliferation, migration and invasion ability of H1975/EGFR­TKI cells decreased in a dose­dependent manner, while the percentage of apoptotic cells increased. In addition, the results demonstrated that TW37 reduced the expression of PIP3 and the phosphorylation of AKT serine/threonine kinase 1 (AKT) in H1975/EGFR­TKI cells in a dose­dependent manner. In conclusion, TW37 inhibited H1975/EGFR­TKI cell growth and induced cell apoptosis potentially via suppression of AKT signaling pathway activation.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA