RESUMO
A fundamental understanding of the hot-carrier dynamics in halide perovskites is crucial for unlocking their prospects for next generation photovoltaics. Presently, a coherent picture of the hot carrier cooling process remains patchy due to temporally overlapping contributions from many-body interactions, multi-bands, band gap renormalization, Burstein-Moss shift etc. Pump-push-probe (PPP) spectroscopy recently emerges as a powerful tool complementing the ubiquitous pump-probe (PP) spectroscopy in the study of hot-carrier dynamics. However, limited information from PPP on the initial excitation density and carrier temperature curtails its full potential. Herein, this work bridges this gap in PPP with a unified model that retrieves these essential hot carrier metrics like initial carrier density and carrier temperature under the push conditions, thus permitting direct comparison with traditional PP spectroscopy. These results are well-fitted by the phonon bottleneck model, from which the longitudinal optical phonon scattering time τLO , for MAPbBr3 and MAPbI3 halide perovskite thin film samples are determined to be 240 ± 10 and 370 ± 10 fs, respectively.
RESUMO
Carrier diffusion and surface recombination are key processes influencing the performance of conventional semiconductor devices. However, the interplay of photon recycling together with these processes in halide perovskites obfuscates our understanding. Herein, we discern these inherent processes in a thin FAPbBr3 perovskite single crystal (PSC) utilizing a unique transient reflectance technique that allows accurate diffusion modeling with clear boundary conditions. Temperature-dependent measurements reveal the coexistence of shallow and deep traps at the surface. The inverse quadratic dependence of temperature on carrier mobility µ suggests an underlying scattering mechanism arising from the anharmonic deformation of the PbBr6 cage. Our findings ascertain the fundamental limits of the intrinsic surface recombination velocity (S) and carrier diffusion coefficient (D) in PSC samples. Importantly, these insights will help resolve the ongoing debate and clarify the ambiguity surrounding the contributions of photon recycling and carrier diffusion in perovskite optoelectronics.
RESUMO
Two-dimensional (2D) lead halide Ruddlesden-Popper perovskites (RPP) have recently emerged as a prospective material system for optoelectronic applications. Their self-assembled multi quantum-well structure gives rise to the novel interwell energy funnelling phenomenon, which is of broad interests for photovoltaics, light-emission applications, and emerging technologies (e.g., spintronics). Herein, we develop a realistic finite quantum-well superlattice model that corroborates the hypothesis of exciton delocalization across different quantum-wells in RPP. Such delocalization leads to a sub-50 fs coherent energy transfer between adjacent wells, with the efficiency depending on the RPP phase matching and the organic large cation barrier lengths. Our approach provides a coherent and comprehensive account for both steady-state and transient dynamical experimental results in RPPs. Importantly, these findings pave the way for a deeper understanding of these systems, as a cornerstone crucial for establishing material design rules to realize efficient RPP-based devices.
RESUMO
It is extremely significant to study the trap state passivation and minimize the trap states of perovskite to achieve high-performance perovskite solar cells (PSCs). Here, we have first revealed and demonstrated that a novel p-type conductor Cu(thiourea)I [Cu(Tu)I] incorporated in perovskite layer can effectively passivate the trap states of perovskite via interacting with the under-coordinated metal cations and halide anions at the perovskite crystal surface. The trap state energy level of perovskite can be shallowed from 0.35-0.45 eV to 0.25-0.35 eV. In addition, the incorporated Cu(Tu)I can participate in constructing the p-i bulk heterojunctions with perovskite, leading to an increase of the depletion width from 126 to 265 nm, which is advantageous for accelerating hole transport and reducing charge carrier recombination. For these two synergistic effects, Cu(Tu)I can play a much better role than that of the traditional p-type conductor CuI, probably due to its identical valence band maximum with that of perovskite, which enables to not only lower the trap state energy level to a greater extent but also eliminate the potential wells for holes at the p-i heterojunctions. After optimization, a breakthrough efficiency of 19.9% has been obtained in the inverted PSCs with Cu(Tu)I as the trap state passivator of perovskite.
RESUMO
Although inorganic hole-transport materials usually possess high chemical stability, hole mobility, and low cost, the efficiency of most of inorganic hole conductor-based perovskite solar cells is still much lower than that of the traditional organic hole conductor-based cells. Here, we have successfully fabricated high quality CH3NH3PbI3 films on top of a CuSCN layer by utilizing a one-step fast deposition-crystallization method, which have lower surface roughness and smaller interface contact resistance between the perovskite layer and the selective contacts in comparison with the films prepared by a conventional two-step sequential deposition process. The average efficiency of the CuSCN-based inverted planar CH3NH3PbI3 solar cells has been improved to 15.6% with a highest PCE of 16.6%, which is comparable to that of the traditional organic hole conductor-based cells, and may promote wider application of the inexpensive inorganic materials in perovskite solar cells.
RESUMO
Colloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr3 QDs. However, this also increases the fluorescence intermittency. Achieving high SP purity and blinking mitigation simultaneously remains a significant challenge. Here, we transcend this limitation with room-temperature synthesized weakly confined hybrid organic-inorganic perovskite (HOIP) QDs. Superior single photon purity with a low g(2)(0) < 0.07 ± 0.03 and a nearly blinking-free behavior (ON-state fraction >95%) in 11 nm FAPbBr3 QDs are achieved at room temperature, attributed to their long exciton lifetimes (τX) and short biexciton lifetimes (τXX). The significance of the organic A-cation is further validated using the mixed-cation FAxCs1-xPbBr3. Theoretical calculations utilizing a combination of the Bethe-Salpeter (BSE) and k·p approaches point toward the modulation of the dielectric constants by the organic cations. Importantly, our findings provide valuable insights into an additional lever for engineering facile-synthesized room-temperature PQD single photon sources.
RESUMO
Coherent optical manipulation of exciton states provides a fascinating approach for quantum gating and ultrafast switching. However, their coherence time for incumbent semiconductors is highly susceptible to thermal decoherence and inhomogeneous broadening effects. Here, we uncover zero-field exciton quantum beating and anomalous temperature dependence of the exciton spin lifetimes in CsPbBr3 perovskite nanocrystals (NCs) ensembles. The quantum beating between two exciton fine-structure splitting (FSS) levels enables coherent ultrafast optical control of the excitonic degree of freedom. From the anomalous temperature dependence, we identify and fully parametrize all the regimes of exciton spin depolarization, finding that approaching room temperature, it is dominated by a motional narrowing process governed by the exciton multilevel coherence. Importantly, our results present an unambiguous full physical picture of the complex interplay of the underlying spin decoherence mechanisms. These intrinsic exciton FSS states in perovskite NCs present fresh opportunities for spin-based photonic quantum technologies.
RESUMO
Carrier multiplication (CM) holds great promise to break the Shockley-Queisser limit of single junction photovoltaic cells. Despite compelling spectroscopic evidence of strong CM effects in halide perovskites, studies in actual perovskite solar cells (PSCs) are lacking. Herein, we reconcile this knowledge gap using the testbed Cs0.05FA0.5MA0.45Pb0.5Sn0.5I3 system exhibiting efficient CM with a low threshold of 2Eg (~500 nm) and high efficiency of 99.4 ± 0.4%. Robust CM enables an unbiased internal quantum efficiency exceeding 110% and reaching as high as 160% in the best devices. Importantly, our findings inject fresh insights into the complex interplay of various factors (optical and parasitic absorption losses, charge recombination and extraction losses, etc.) undermining CM contributions to the overall performance. Surprisingly, CM effects may already exist in mixed Pb-Sn PSCs but are repressed by its present architecture. A comprehensive redesign of the existing device configuration is needed to leverage CM effects for next-generation PSCs.
RESUMO
Multiquantum-well (MQW) perovskite is one of the forerunners in high-efficiency perovskite LED (PeLEDs) research. Despite the rapid inroads, PeLEDs suffer from the pertinent issue of efficiency decrease with increasing brightness, commonly known as "efficiency roll-off". The underlying mechanisms are presently an open question. Herein, we explicate the E-field effects on the exciton states in the archetypal MQW perovskite (C6H5C2H4NH3)2PbI4, or PEPI, in a device-like architecture using field-assisted transient spectroscopy and theoretical modeling. The applied E-field results in a complex interplay of spectral blueshifts and enhancement/quenching of the different exciton modes. The former originates from the DC Stark shift, while the latter is attributed to the E-field modulation of the transfer rates between bright/dark exciton modes. Importantly, our findings uncover crucial insights into the photophysical processes under E-field modulation contributing to efficiency roll-off in MQW PeLEDs. Electrical modulation of exciton properties presents exciting possibilities for signal processing devices.
RESUMO
Bismuth-based double perovskite Cs2AgBiBr6 is regarded as a potential candidate for low-toxicity, high-stability perovskite solar cells. However, its performance is far from satisfactory. Albeit being an indirect bandgap semiconductor, we observe bright emission with large bimolecular recombination coefficient (reaching 4.5 ± 0.1 × 10-11 cm3 s-1) and low charge carrier mobility (around 0.05 cm2 s-1 V-1). Besides intermediate Fröhlich couplings present in both Pb-based perovskites and Cs2AgBiBr6, we uncover evidence of strong deformation potential by acoustic phonons in the latter through transient reflection, time-resolved terahertz measurements, and density functional theory calculations. The Fröhlich and deformation potentials synergistically lead to ultrafast self-trapping of free carriers forming polarons highly localized on a few units of the lattice within a few picoseconds, which also breaks down the electronic band picture, leading to efficient radiative recombination. The strong self-trapping in Cs2AgBiBr6 could impose intrinsic limitations for its application in photovoltaics.
RESUMO
In this work, a fully tin-based, mixed-organic-cation perovskite absorber (FA) x (MA)1-x SnI3 (FA = NH2CH = NH2+, MA = CH3NH3+) for lead-free perovskite solar cells (PSCs) with inverted structure is presented. By optimizing the ratio of FA and MA cations, a maximum power conversion efficiency of 8.12% is achieved for the (FA)0.75(MA)0.25SnI3-based device along with a high open-circuit voltage of 0.61 V, which originates from improved perovskite film morphology and inhibits recombination process in the device. The cation-mixing approach proves to be a facile method for the efficiency enhancement of tin-based PSCs.
RESUMO
Inverted planar heterojunction perovskite solar cells with poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) sulfonic acid ( PEDOT: PSS) as the hole transport layer (HTL) have attracted significant attention during recent years. However, these devices suffer from a serious stability issue due to the acidic and hygroscopic characteristics of PEDOT: PSS. In this work, we demonstrate a room-temperature and solution-processed CuI film which is used as the HTL for inverted perovskite solar cells. As a result, an impressive PCE of 16.8% is achieved by the device based on the CuI HTL. Moreover, the unsealed CuI-based device displays enhanced air stability compared to the PEDOT: PSS-based device. In addition, the fabrication of the CuI HTL is a simple and time-saving procedure without any post-treatment, thus making it a promising candidate as the HTL in inverted perovskite solar cells and a potential target for efficient flexible and tandem solar cells.
RESUMO
The feasibility of co-depositing a hole-conductor and a perovskite layer is demonstrated to simplify the preparation process of perovskite solar cells. The CuSCN incorporated in the perovskite layer can participate in forming the perovskite/CuSCN bulk-heterojunction and accelerate hole transport effectively, which eventually leads to a maximum power conversion efficiency of 18.1% with almost no J-V hysteresis.
RESUMO
During the past several years, methylammonium lead halide perovskites have been widely investigated as light absorbers for thin-film photovoltaic cells. Among the various device architectures, the inverted planar heterojunction perovskite solar cells have attracted special attention for their relatively simple fabrication and high efficiencies. Although promising efficiencies have been obtained in the inverted planar geometry based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) sulfonic acid ( PEDOT: PSS) as the hole transport material (HTM), the hydrophilicity of the PEDOT: PSS is a critical factor for long-term stability. In this paper, a CuOx hole transport layer from a facile solution-processed method was introduced into the inverted planar heterojunction perovskite solar cells. After the optimization of the devices, a champion PCE of 17.1% was obtained with an open circuit voltage (Voc) of 0.99 V, a short-circuit current (Jsc) of 23.2 mA cm(-2) and a fill factor (FF) of 74.4%. Furthermore, the unencapsulated device cooperating with the CuOx film exhibited superior performance in the stability test, compared to the device involving the PEDOT: PSS layer, indicating that CuOx could be a promising HTM for replacing PEDOT: PSS in inverted planar heterojunction perovskite solar cells.
RESUMO
Organic-inorganic hybrid perovskite solar cells (PSCs) have drawn worldwide intense research in recent years. Herein, we have first applied another p-type inorganic hole-selective contact material, CuS nanoparticles (CuS NPs), in an inverted planar heterojunction (PHJ) perovskite solar cell. The CuS NP-modification of indium tin oxide (ITO) has successfully tuned the surface work function from 4.9 to 5.1 eV but not affect the surface roughness and transmittance, which can effectively reduce the interfacial carrier injection barrier and facilitate high hole extraction efficiency between the perovskite and ITO layers. After optimization, the maximum power conversion efficiency (PCE) has been over 16% with low J-V hysteresis and excellent stability. Therefore, the low-cost solution-processed and stable CuS NPs would be an alternative interfacial modification material for industrial production in perovskite solar cells.