Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 726
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 609(7927): 616-621, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917926

RESUMO

The PIN-FORMED (PIN) protein family of auxin transporters mediates polar auxin transport and has crucial roles in plant growth and development1,2. Here we present cryo-electron microscopy structures of PIN3 from Arabidopsis thaliana in the apo state and in complex with its substrate indole-3-acetic acid and the inhibitor N-1-naphthylphthalamic acid (NPA). A. thaliana PIN3 exists as a homodimer, and its transmembrane helices 1, 2 and 7 in the scaffold domain are involved in dimerization. The dimeric PIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of indole-3-acetic acid and NPA and elucidate the molecular mechanism of NPA inhibition on PIN-mediated auxin transport. The PIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Arabidopsis/química , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestrutura , Transporte Biológico/efeitos dos fármacos , Microscopia Crioeletrônica , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ftalimidas/química , Ftalimidas/farmacologia , Domínios Proteicos , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
2.
Mol Cell ; 79(2): 304-319.e7, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32679077

RESUMO

Accurate regulation of innate immunity is necessary for the host to efficiently respond to invading pathogens and avoid excessive harmful immune pathology. Here we identified OTUD3 as an acetylation-dependent deubiquitinase that restricts innate antiviral immune signaling. OTUD3 deficiency in mice results in enhanced innate immunity, a diminished viral load, and morbidity. OTUD3 directly hydrolyzes lysine 63 (Lys63)-linked polyubiquitination of MAVS and thus shuts off innate antiviral immune response. Notably, the catalytic activity of OTUD3 relies on acetylation of its Lys129 residue. In response to virus infection, the acetylated Lys129 is removed by SIRT1, which promptly inactivates OTUD3 and thus allows timely induction of innate antiviral immunity. Importantly, acetyl-OTUD3 levels are inversely correlated with IFN-ß expression in influenza patients. These findings establish OTUD3 as a repressor of MAVS and uncover a previously unknown regulatory mechanism by which the catalytic activity of OTUD3 is tightly controlled to ensure timely activation of antiviral defense.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Imunidade Inata , Influenza Humana/imunologia , Proteases Específicas de Ubiquitina/fisiologia , Células A549 , Acetilação , Adulto , Animais , Enzimas Desubiquitinantes/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ubiquitinação
3.
EMBO J ; 42(10): e113320, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37066886

RESUMO

The eukaryotic vacuolar transporter chaperone (VTC) complex acts as a polyphosphate (polyP) polymerase that synthesizes polyP from adenosine triphosphate (ATP) and translocates polyP across the vacuolar membrane to maintain an intracellular phosphate (Pi ) homeostasis. To discover how the VTC complex performs its function, we determined a cryo-electron microscopy structure of an endogenous VTC complex (Vtc4/Vtc3/Vtc1) purified from Saccharomyces cerevisiae at 3.1 Å resolution. The structure reveals a heteropentameric architecture of one Vtc4, one Vtc3, and three Vtc1 subunits. The transmembrane region forms a polyP-selective channel, likely adopting a resting state conformation, in which a latch-like, horizontal helix of Vtc4 limits the entrance. The catalytic Vtc4 central domain is located on top of the pseudo-symmetric polyP channel, creating a strongly electropositive pathway for nascent polyP that can couple synthesis to translocation. The SPX domain of the catalytic Vtc4 subunit positively regulates polyP synthesis by the VTC complex. The noncatalytic Vtc3 regulates VTC through a phosphorylatable loop. Our findings, along with the functional data, allow us to propose a mechanism of polyP channel gating and VTC complex activation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Polifosfatos/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(27): e2409257121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917009

RESUMO

Dynamic protein structures are crucial for deciphering their diverse biological functions. Two-dimensional infrared (2DIR) spectroscopy stands as an ideal tool for tracing rapid conformational evolutions in proteins. However, linking spectral characteristics to dynamic structures poses a formidable challenge. Here, we present a pretrained machine learning model based on 2DIR spectra analysis. This model has learned signal features from approximately 204,300 spectra to establish a "spectrum-structure" correlation, thereby tracing the dynamic conformations of proteins. It excels in accurately predicting the dynamic content changes of various secondary structures and demonstrates universal transferability on real folding trajectories spanning timescales from microseconds to milliseconds. Beyond exceptional predictive performance, the model offers attention-based spectral explanations of dynamic conformational changes. Our 2DIR-based pretrained model is anticipated to provide unique insights into the dynamic structural information of proteins in their native environments.


Assuntos
Aprendizado de Máquina , Proteínas , Espectrofotometria Infravermelho , Proteínas/química , Espectrofotometria Infravermelho/métodos , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
5.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36567622

RESUMO

Genomic recombination is an important driving force for viral evolution, and recombination events have been reported for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the Coronavirus Disease 2019 pandemic, which significantly alter viral infectivity and transmissibility. However, it is difficult to identify viral recombination, especially for low-divergence viruses such as SARS-CoV-2, since it is hard to distinguish recombination from in situ mutation. Herein, we applied information theory to viral recombination analysis and developed VirusRecom, a program for efficiently screening recombination events on viral genome. In principle, we considered a recombination event as a transmission process of ``information'' and introduced weighted information content (WIC) to quantify the contribution of recombination to a certain region on viral genome; then, we identified the recombination regions by comparing WICs of different regions. In the benchmark using simulated data, VirusRecom showed a good balance between precision and recall compared to two competing tools, RDP5 and 3SEQ. In the detection of SARS-CoV-2 XE, XD and XF recombinants, VirusRecom providing more accurate positions of recombination regions than RDP5 and 3SEQ. In addition, we encapsulated the VirusRecom program into a command-line-interface software for convenient operation by users. In summary, we developed a novel approach based on information theory to identify viral recombination within highly similar sequences, providing a useful tool for monitoring viral evolution and epidemic control.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Teoria da Informação , Filogenia , Recombinação Genética
6.
Nat Chem Biol ; 19(10): 1276-1285, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550431

RESUMO

Phe-Met-Arg-Phe-amide (FMRFamide)-activated sodium channels (FaNaCs) are a family of channels activated by the neuropeptide FMRFamide, and, to date, the underlying ligand gating mechanism remains unknown. Here we present the high-resolution cryo-electron microscopy structures of Aplysia californica FaNaC in both apo and FMRFamide-bound states. AcFaNaC forms a chalice-shaped trimer and possesses several notable features, including two FaNaC-specific insertion regions, a distinct finger domain and non-domain-swapped transmembrane helix 2 in the transmembrane domain (TMD). One FMRFamide binds to each subunit in a cleft located in the top-most region of the extracellular domain, with participation of residues from the neighboring subunit. Bound FMRFamide adopts an extended conformation. FMRFamide binds tightly to A. californica FaNaC in an N terminus-in manner, which causes collapse of the binding cleft and induces large local conformational rearrangements. Such conformational changes are propagated downward toward the TMD via the palm domain, possibly resulting in outward movement of the TMD and dilation of the ion conduction pore.


Assuntos
Ativação do Canal Iônico , Neuropeptídeos , FMRFamida/metabolismo , FMRFamida/farmacologia , Microscopia Crioeletrônica , Neuropeptídeos/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismo
7.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

8.
J Biol Chem ; 299(6): 104780, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142220

RESUMO

The calcium-activated chloride channel TMEM16A is a potential drug target to treat hypertension, secretory diarrhea, and several cancers. However, all reported TMEM16A structures are either closed or desensitized, and direct inhibition of the open state by drug molecules lacks a reliable structural basis. Therefore, revealing the druggable pocket of TMEM16A exposed in the open state is important for understanding protein-ligand interactions and facilitating rational drug design. Here, we reconstructed the calcium-activated open conformation of TMEM16A using an enhanced sampling algorithm and segmental modeling. Furthermore, we identified an open-state druggable pocket and screened a potent TMEM16A inhibitor, etoposide, which is a derivative of a traditional herbal monomer. Molecular simulations and site-directed mutagenesis showed that etoposide binds to the open state of TMEM16A, thereby blocking the ion conductance pore of the channel. Finally, we demonstrated that etoposide can target TMEM16A to inhibit the proliferation of prostate cancer PC-3 cells. Together, these findings provide a deep understanding of the TMEM16A open state at an atomic level and identify pockets for the design of novel inhibitors with broad applications in chloride channel biology, biophysics, and medicinal chemistry.


Assuntos
Anoctamina-1 , Modelos Moleculares , Humanos , Masculino , Anoctamina-1/química , Anoctamina-1/metabolismo , Cálcio/metabolismo , Etoposídeo/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador
9.
J Am Chem Soc ; 146(4): 2663-2672, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240637

RESUMO

The structurally sensitive amide II infrared (IR) bands of proteins provide valuable information about the hydrogen bonding of protein secondary structures, which is crucial for understanding protein dynamics and associated functions. However, deciphering protein structures from experimental amide II spectra relies on time-consuming quantum chemical calculations on tens of thousands of representative configurations in solvent water. Currently, the accurate simulation of amide II spectra for whole proteins remains a challenge. Here, we present a machine learning (ML)-based protocol designed to efficiently simulate the amide II IR spectra of various proteins with an accuracy comparable to experimental results. This protocol stands out as a cost-effective and efficient alternative for studying protein dynamics, including the identification of secondary structures and monitoring the dynamics of protein hydrogen bonding under different pH conditions and during protein folding process. Our method provides a valuable tool in the field of protein research, focusing on the study of dynamic properties of proteins, especially those related to hydrogen bonding, using amide II IR spectroscopy.


Assuntos
Amidas , Inteligência Artificial , Amidas/química , Ligação de Hidrogênio , Espectrofotometria Infravermelho/métodos , Proteínas/química
10.
J Pharmacol Exp Ther ; 389(2): 163-173, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453527

RESUMO

Hepatocellular carcinoma (HCC) is the predominant pathologic type of primary liver cancer. It is a malignant tumor of liver epithelial cells. There are many ways to treat HCC, but the survival rate for HCC patients remains low. Therefore, understanding the underlying mechanisms by which HCC occurs and develops is critical to explore new therapeutic targets. Aldehyde dehydrogenase 2 (ALDH2) is an important player in the redox reaction of ethanol with endogenous aldehyde products released by lipid peroxidation. Increasing evidence suggests that ALDH2 is a crucial regulator of human tumor development, including HCC. Therefore, clarifying the relationship between ALDH2 and HCC is helpful for formulating rational treatment strategies. This review highlights the regulatory roles of ALDH2 in the development of HCC, elucidates the multiple potential mechanisms by which ALDH2 regulates the development of HCC, and summarizes the progress of research on ALDH2 gene polymorphisms and HCC susceptibility. Meanwhile, we envision viable strategies for targeting ALDH2 in the treatment of HCC SIGNIFICANCE STATEMENT: Numerous studies have aimed to explore novel therapeutic targets for HCC, and ALDH2 has been reported to be a critical regulator of HCC progression. This review discusses the functions, molecular mechanisms, and clinical significance of ALDH2 in the development of HCC and examines the prospects of ALDH2-based therapy for HCC.


Assuntos
Aldeído Oxirredutases , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética
11.
Bioinformatics ; 39(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916746

RESUMO

MOTIVATION: Computational protein sequence design has been widely applied in rational protein engineering and increasing the design accuracy and efficiency is highly desired. RESULTS: Here, we present ProDESIGN-LE, an accurate and efficient approach to protein sequence design. ProDESIGN-LE adopts a concise but informative representation of the residue's local environment and trains a transformer to learn the correlation between local environment of residues and their amino acid types. For a target backbone structure, ProDESIGN-LE uses the transformer to assign an appropriate residue type for each position based on its local environment within this structure, eventually acquiring a designed sequence with all residues fitting well with their local environments. We applied ProDESIGN-LE to design sequences for 68 naturally occurring and 129 hallucinated proteins within 20 s per protein on average. The designed proteins have their predicted structures perfectly resembling the target structures with a state-of-the-art average TM-score exceeding 0.80. We further experimentally validated ProDESIGN-LE by designing five sequences for an enzyme, chloramphenicol O-acetyltransferase type III (CAT III), and recombinantly expressing the proteins in Escherichia coli. Of these proteins, three exhibited excellent solubility, and one yielded monomeric species with circular dichroism spectra consistent with the natural CAT III protein. AVAILABILITY AND IMPLEMENTATION: The source code of ProDESIGN-LE is available at https://github.com/bigict/ProDESIGN-LE.


Assuntos
Proteínas , Software , Sequência de Aminoácidos , Proteínas/química
12.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343092

RESUMO

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Assuntos
Hemostáticos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Cisteína , Ácido Hialurônico , Antibacterianos/farmacologia , Bandagens , Maleimidas
13.
Org Biomol Chem ; 22(7): 1495-1499, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293848

RESUMO

We hereby report the ortho-cyanomethylation of aryl fluoroalkyl sulfoxides with acetonitrile through a sulfonium-Claisen-type rearrangement. This reaction enables the incorporation of two valuable functional groups, such as the cyanomethyl group and the fluoroalkylthio group, into arenes. Remarkably, fluoroalkylthio groups, such as SCFH2 and SCF2H, bearing active hydrogen, are well tolerated by the reaction. The success of the reaction relies on the use of an excess amount of acetonitrile and the electronegative effect of fluoroalkyl substituents, both of which promote the electrophilic assembly of sulfoxides with acetonitrile. Consequently, the sulfonium-Claisen rearrangement reaction tolerates a wide variety of fluoroalkyl sulfoxides bearing functional groups including halides, nitriles, ketones, sulfones, and amides, which are appealing for subsequent elaboration and exploration.

14.
Phys Chem Chem Phys ; 26(13): 10408-10418, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502252

RESUMO

Nuclear transition protein TNP1 is a crucial player mediating histone-protamine exchange in condensing spermatids. A unique combination of intrinsic disorder and multivalent properties turns TNP1 into an ideal agent for orchestrating the formation of versatile TNP-DNA assemblies. Despite its significance, the physicochemical property and the molecular mechanism followed by TNP1 for histone replacement and DNA condensation are still poorly understood. This study reports the first-time in vitro expression and purification of human TNP1 and investigates the hierarchical dynamics of TNP1-DNA interaction using a combination of computational simulations, biochemical assays, fluorescence imaging, and atomic force microscopy. We explored three crucial facets of TNP1-DNA interactions. Initially, we delve into the molecular binding process that entails fuzzy interactions between TNP1 and DNA at the atomistic scale. Subsequently, we analyze how TNP1 binding affects the electrostatic and mechanical characteristics of DNA and influences its morphology. Finally, we study the biomolecular condensation of TNP1-DNA when subjected to high concentrations. The findings of our study set the foundation for comprehending the potential involvement of TNP1 in histone replacement and DNA condensation in spermatogenesis.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Masculino , Humanos , Histonas/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Proteínas Nucleares
15.
Nature ; 556(7702): 520-524, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670288

RESUMO

Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.


Assuntos
Arginina/análogos & derivados , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Ácidos Difenilacéticos/química , Ácidos Difenilacéticos/metabolismo , Neuropeptídeo Y/metabolismo , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/química , Arginina/química , Arginina/metabolismo , Arginina/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Di-Hidropiridinas/farmacologia , Ácidos Difenilacéticos/farmacologia , Humanos , Fosfatos de Inositol/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Neuropeptídeo Y/química , Neuropeptídeo Y/farmacologia , Ressonância Magnética Nuclear Biomolecular , Compostos de Fenilureia/farmacologia , Ligação Proteica , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34185681

RESUMO

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades a human cell via human angiotensin-converting enzyme 2 (hACE2) as the entry, causing the severe coronavirus disease (COVID-19). The interactions between hACE2 and the spike glycoprotein (S protein) of SARS-CoV-2 hold the key to understanding the molecular mechanism to develop treatment and vaccines, yet the dynamic nature of these interactions in fluctuating surroundings is very challenging to probe by those structure determination techniques requiring the structures of samples to be fixed. Here we demonstrate, by a proof-of-concept simulation of infrared (IR) spectra of S protein and hACE2, that time-resolved spectroscopy may monitor the real-time structural information of the protein-protein complexes of interest, with the help of machine learning. Our machine learning protocol is able to identify fine changes in IR spectra associated with variation of the secondary structures of S protein of the coronavirus. Further, it is three to four orders of magnitude faster than conventional quantum chemistry calculations. We expect our machine learning protocol would accelerate the development of real-time spectroscopy study of protein dynamics.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Aprendizado de Máquina , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Cinética , Ligação Proteica , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Glicoproteína da Espícula de Coronavírus/química
17.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620712

RESUMO

Wolbachia bacteria, inherited through the female germ line, infect a large fraction of arthropod species. Many Wolbachia strains manipulate host reproduction, most commonly through cytoplasmic incompatibility (CI). CI, a conditional male sterility, results when Wolbachia-infected male insects mate with uninfected females; viability is restored if the female is similarly infected (called "rescue"). CI is used to help control mosquito-borne viruses such as dengue and Zika, but its mechanisms remain unknown. The coexpressed CI factors CifA and CifB form stable complexes in vitro, but the timing and function of this interaction in the insect are unresolved. CifA expression in the female germ line is sufficient for rescue. We report high-resolution structures of a CI-factor complex, CinA-CinB, which utilizes a unique binding mode between the CinA rescue factor and the CinB nuclease; the structures were validated by biochemical and yeast growth analyses. Importantly, transgenic expression in Drosophila of a nonbinding CinA mutant, designed based on the CinA-CinB structure, suggests CinA expressed in females must bind CinB imported by sperm in order to rescue embryonic viability. Binding between cognate factors is conserved in an enzymatically distinct CI system, CidA-CidB, suggesting universal features in Wolbachia CI induction and rescue.


Assuntos
Drosophila melanogaster/microbiologia , Embrião não Mamífero/embriologia , Infertilidade Masculina/fisiopatologia , Reprodução/fisiologia , Wolbachia/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Desenvolvimento Embrionário , Feminino , Masculino , Controle de Mosquitos/métodos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Simbiose , Doenças Transmitidas por Vetores/prevenção & controle , Doenças Transmitidas por Vetores/transmissão , Doenças Transmitidas por Vetores/virologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38702157

RESUMO

Introduction: Preeclampsia (PE) is a fundamental cause of preterm labor, intrauterine growth restriction, and persistent postpartum hypertension. In the present study, we aimed to investigate the correlation between 24-h urinary protein excretion, serum markers, and placental growth factor and their adverse pregnancy outcomes in patients with PE. Methods: A total of 126 pregnant women with PE (86 cases of mild PE and 40 cases of severe PE, assigned to the observation group) who came to our hospital from March 2019 to December 2021 for regular obstetric checkups and delivery were selected, with 60 healthy pregnant women assigned to the control group. Routine biochemical parameters, 24-h urinary protein quantification, serum parameters, and placental growth factor levels were recorded. The incidence of adverse neonatal pregnancy outcomes and abnormal fetal heart monitoring, neonatal body mass, 1 min Apgar score, and other adverse pregnancy outcomes were also analyzed in the different groups. Results: In comparison with healthy pregnant subjects, PE patients had earlier delivery gestational weeks (P < .05), significantly higher systolic blood pressure (SBP), diastolic blood pressure (DBP), 24-h urinary protein excretion, total cholesterol (TC), triglyceride (TG), D-Dimer and human chorionic gonadotropin (ß-hCG) levels (P < .05), lower albumin (ALB), platelet count, pregnant associated plasma protein A (PAPP-A) and placental growth factor (PLGF) (P < .05), and higher incidence of maternal and perinatal adverse outcomes (P < .05). Conclusions: Combined screening of 24-h urinary protein, PAPP-A, ß-hCG, PLGF, and serum indicators in early pregnancy are essential in predicting PE, allowing timely assessment of the risk of adverse pregnancy, and providing a basis for clinical intervention.

19.
J Med Internet Res ; 26: e44443, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833294

RESUMO

BACKGROUND: Singapore, like the rest of Asia, faces persistent challenges to mental health promotion, including stigma around unwellness and seeking treatment and a lack of trained mental health personnel. The COVID-19 pandemic, which created a surge in mental health care needs and simultaneously accelerated the adoption of digital health solutions, revealed a new opportunity to quickly scale innovative solutions in the region. OBJECTIVE: In June 2020, the Singaporean government launched mindline.sg, an anonymous digital mental health resource website that has grown to include >500 curated local mental health resources, a clinically validated self-assessment tool for depression and anxiety, an artificial intelligence (AI) chatbot from Wysa designed to deliver digital therapeutic exercises, and a tailored version of the website for working adults called mindline at work. The goal of the platform is to empower Singapore residents to take charge of their own mental health and to be able to offer basic support to those around them through the ease and convenience of a barrier-free digital solution. METHODS: Website use is measured through click-level data analytics captured via Google Analytics and custom application programming interfaces, which in turn drive a customized analytics infrastructure based on the open-source platforms Titanium Database and Metabase. Unique, nonbounced (users that do not immediately navigate away from the site), engaged, and return users are reported. RESULTS: In the 2 years following launch (July 1, 2020, through June 30, 2022), the website received >447,000 visitors (approximately 15% of the target population of 3 million), 62.02% (277,727/447,783) of whom explored the site or engaged with resources (referred to as nonbounced visitors); 10.54% (29,271/277,727) of those nonbounced visitors returned. The most popular features on the platform were the dialogue-based therapeutic exercises delivered by the chatbot and the self-assessment tool, which were used by 25.54% (67,626/264,758) and 11.69% (32,469/277,727) of nonbounced visitors. On mindline at work, the rates of nonbounced visitors who engaged extensively (ie, spent ≥40 seconds exploring resources) and who returned were 51.56% (22,474/43,588) and 13.43% (5,853/43,588) over a year, respectively, compared to 30.9% (42,829/138,626) and 9.97% (13,822/138,626), respectively, on the generic mindline.sg site in the same year. CONCLUSIONS: The site has achieved desired reach and has seen a strong growth rate in the number of visitors, which required substantial and sustained digital marketing campaigns and strategic outreach partnerships. The site was careful to preserve anonymity, limiting the detail of analytics. The good levels of overall adoption encourage us to believe that mild to moderate mental health conditions and the social factors that underly them are amenable to digital interventions. While mindline.sg was primarily used in Singapore, we believe that similar solutions with local customization are widely and globally applicable.


Assuntos
COVID-19 , Saúde Mental , Autocuidado , Humanos , Singapura , Autocuidado/métodos , Telemedicina , Promoção da Saúde/métodos , Internet , Pandemias , Inteligência Artificial , SARS-CoV-2 , Serviços de Saúde Mental
20.
Genes Dev ; 30(9): 1086-100, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125670

RESUMO

Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies.


Assuntos
Citosol/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Rhabdoviridae/enzimologia , Infecções por Rhabdoviridae/imunologia , Animais , Linhagem Celular , Ativação Enzimática/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Serina-Treonina Quinase 3 , Vesiculovirus/imunologia , Peixe-Zebra/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA