Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Mater ; 35(36): e2210489, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390483

RESUMO

Achieving multicolor organic afterglow materials with narrowband emission and high color purity is important in various optoelectronic fields but remains a great challenge. Here, an efficient strategy is presented to obtain narrowband organic afterglow materials via Förster resonance energy transfer from long-lived phosphorescence donors to narrowband fluorescence acceptors in a polyvinyl alcohol matrix. The resulting materials exhibit narrowband emission with a full width at half maximum (FWHM) as small as 23 nm and the longest lifetime of 721.22 ms. Meanwhile, by pairing the appropriate donors and acceptors, multicolor and high color purity afterglow ranging from green to red with the maximum photoluminescence quantum yield of 67.1% are achieved. Moreover, given their long luminescence lifetime, high color purity, and flexibility, the potential applications are demonstrated in high-resolution afterglow displays and dynamic and quick information identification in low-light conditions. This work provides a facile approach for developing multicolor and narrowband afterglow materials as well as expands the features of organic afterglow.

2.
Research (Wash D C) ; 6: 0090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000186

RESUMO

Organic scintillators, materials with the ability to exhibit luminescence when exposed to X-rays, have aroused increasing interest in recent years. However, the enhancement of radioluminescence and improving X-ray absorption of organic scintillators lie in the inherent dilemma, due to the waste of triplet excitons and weak X-ray absorption during scintillation. Here, we employ halogenated thermally activated delayed fluorescence materials to improve the triplet exciton utilization and X-ray absorption simultaneously, generating efficient scintillation with a low detection limit, which is one order of magnitude lower than the dosage for X-ray medical diagnostics. Through experimental study and theoretical calculation, we reveal the positive role of X-ray absorption, quantum yields of prompt fluorescence, and intersystem crossing in promoting the radioluminescence intensity. This finding offers an opportunity to design diverse types of organic scintillators and expands the applications of thermally activated delayed fluorescence.

3.
Plant Commun ; 3(2): 100265, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35529947

RESUMO

WRKY transcription factors are known mostly for their function in plant defense, abiotic stress responses, senescence, seed germination, and development of the pollen, embryo, and seed. Here, we report the regulatory functions of two WRKY proteins in photomorphogenesis and PIF4 expression. PIF4 is a critical signaling hub in light, temperature, and hormonal signaling pathways. Either its expression or its accumulation peaks in the morning and afternoon. WRKY2 and WRKY10 form heterodimers and recognize their target site in the PIF4 promoter near the MYB element that is bound by CCA1 and LHY under red and blue light. WRKY2 and WRKY10 interact directly with CCA1/LHY to enhance their targeting but interact indirectly with SHB1. The two WRKY proteins also interact with phyB, and their interaction enhances the targeting of CCA1 and LHY to the PIF4 promoter. SHB1 associates with the WRKY2 and WRKY10 loci and enhances their expression in parallel with the PIF4 expression peaks. This forward regulatory loop further sustains the accumulation of the two WRKY proteins and the targeting of CCA1/LHY to the PIF4 locus. In summary, interactions of two WRKY proteins with CCA1/LHY and phyB maintain an optimal expression level of PIF4 toward noon and afternoon, which is essential to sketch the circadian pattern of PIF4 expression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fitocromo B/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Nat Commun ; 13(1): 4890, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986007

RESUMO

Intermolecular interactions, including attractive and repulsive interactions, play a vital role in manipulating functionalization of the materials from micro to macro dimensions. Despite great success in generation of ultralong organic phosphorescence (UOP) by suppressing non-radiative transitions through attractive interactions recently, there is still no consideration of repulsive interactions on UOP. Herein, we proposed a feasible approach by introducing carboxyl groups into organic phosphors, enabling formation of the intense repulsive interactions between the isolated molecules and the matrix in rigid environment. Our experimental results show a phosphor with a record lifetime and quantum efficiency up to 3.16 s and 50.0% simultaneously in film under ambient conditions. Considering the multiple functions of the flexible films, the potential applications in anti-counterfeiting, afterglow display and visual frequency indicators were demonstrated. This finding not only outlines a fundamental principle to achieve bright organic phosphorescence in film, but also expands the potential applications of UOP materials.

5.
Nat Commun ; 13(1): 5091, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042210

RESUMO

X-ray-induced photodynamic therapy utilizes penetrating X-rays to activate reactive oxygen species in deep tissues for cancer treatment, which combines the advantages of photodynamic therapy and radiotherapy. Conventional therapy usually requires heavy-metal-containing inorganic scintillators and organic photosensitizers to generate singlet oxygen. Here, we report a more convenient strategy for X-ray-induced photodynamic therapy based on a class of organic phosphorescence nanoscintillators, that act in a dual capacity as scintillators and photosensitizers. The resulting low dose of 0.4 Gy and negligible adverse effects demonstrate the great potential for the treatment of deep tumours. These findings provide an optional route that leverages the optical properties of purely organic scintillators for deep-tissue photodynamic therapy. Furthermore, these organic nanoscintillators offer an opportunity to expand applications in the fields of biomaterials and nanobiotechnology.


Assuntos
Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Radiografia , Oxigênio Singlete , Raios X
6.
Neuroscience ; 440: 267-276, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32531472

RESUMO

In the retina, ON- and OFF-type bipolar cells are classified by subtype-specific center responses, which are attributed to differences in glutamate receptor subtypes. However, the mechanisms by which ON- and OFF-type bipolar cells generate subtype-specific surround responses remain unclear. One hypothesis for surround responses is that intracellular Cl concentrations ([Cl-]i) are set at different levels to achieve opposite polarities for GABA responses in ON- and OFF-type bipolar cells. Although this hypothesis is supported by previous findings obtained from rod (ON-) type bipolar cells, there is currently no information on OFF-type bipolar cells. In the present study, we examined the distribution and function of the Cl transporters, the Na-K-Cl co-transporter (NKCC1) and K-Cl co-transporter (KCC2), in rod (ON-) and OFF-type bipolar cells using immunohistochemical, in situ hybridization, and electrophysiological methods. Rod (ON-) and OFF-type bipolar cells both expressed NKCC1 and KCC2. However, the functional contribution of NKCC1 and KCC2 to the regulation of [Cl-]i differed between rod (ON-) and OFF-type bipolar cells. Strong NKCC1 activity increased [Cl-]i in rod (ON-) type bipolar cells, while that of KCC2 decreased [Cl-]i in OFF-type bipolar cells. We also confirmed the presence of a [Cl-]i gradient between dendrites and axon terminals in rod (ON-type) bipolar cells. Thus, the subtype-specific control of [Cl-]i is achieved by the activity of NKCC1 relative to that of KCC2 and appears to influence the polarity of surround responses.


Assuntos
Simportadores de Cloreto de Sódio-Potássio , Simportadores , Animais , Camundongos , Terminações Pré-Sinápticas , Retina
7.
Neuroendocrinology ; 90(3): 251-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19641296

RESUMO

Melatonin has been implicated in the control of the reproductive system, and the modulatory actions of melatonin on gonadotropin-releasing hormone (GnRH) neurons have been assumed to be indirectly mediated through afferent neurons. However, our previous studies demonstrate sexually dimorphic modulation of A-type gamma-aminobutyric acid (GABA) receptor (GABA(A)R) currents by melatonin in adult rat GnRH neurons and a preferential expression of melatonin 1a receptor (MT1) in male GnRH neurons. Using immortalized GnRH neurons (GT1-7 cells), the present study investigated the mechanism by which the expression of melatonin receptors is regulated in GnRH neurons. Like endogenous GnRH neurons, GT1-7 cells express both GnRH and GnRH receptor mRNAs, indicating that the cells have a self-stimulatory system. A 2-iodomelatonin binding assay and RT-PCR analysis demonstrated that the cells expressed neither MT1 nor MT2. However, treatment of GT1-7 cells with the GnRH antagonist cetrorelix significantly increased 2-iodomelatonin binding and induced a time- and concentration-dependent MT1 mRNA expression. The GABA(A)R currents were then measured using a perforated patch-clamp technique to examine whether the treatment with cetrorelix changed the responses to melatonin. Melatonin augmented the GABA(A)R currents in GT1-7 cells treated with 1 muM cetrorelix for 24 h, while melatonin decreased the currents in the cells not treated with cetrorelix, probably via receptor-independent processes. The present results suggest that GnRH downregulates the expression of MT1 via an autocrine-paracrine mechanism in GT1-7 cells, and modifies the melatonin-induced modulation of GABA(A)R currents. These findings may provide one possible mechanism for the sexually dimorphic responses to melatonin in adult rat GnRH neurons.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hormônio Liberador de Gonadotropina/metabolismo , Antagonistas de Hormônios/farmacologia , Neurônios/efeitos dos fármacos , Receptor MT1 de Melatonina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Depressores do Sistema Nervoso Central/administração & dosagem , Depressores do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Melatonina/administração & dosagem , Melatonina/análogos & derivados , Melatonina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptores de GABA-A/metabolismo , Receptores LHRH/metabolismo , Fatores de Tempo
8.
J Nippon Med Sch ; 85(2): 110-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731494

RESUMO

BACKGROUND: Photoreceptors differentiated from somatic cells are a useful tool for transplantation and drug screening. We previously showed that photosensitive cells are differentiated from human fibroblasts by direct reprogramming. In induced pluripotent stem (iPS) cells or embryonic stem (ES) cells, the properties of differentiated cells differ among the source of cell lines. However, whether or not the properties of the photosensitive cells produced by direct reprogramming are controlled by the origin of the cell line remains unknown. METHODS: We compared the morphological and physiological properties of photosensitive cells induced by two fibroblast cell lines. RESULTS: The differentiated cells had larger somas and more primary processes than the non-infected cells in both cell lines. The degree of morphological change was statistically different between the two cell lines. In addition, physiological responses to light differed between the two cell lines. An outward current (photoreceptor-like response) was observed in both cell lines, while an inward current (intrinsically photosensitive retinal ganglion cell-like response) was observed only in one cell line under light stimulation. CONCLUSIONS: These results suggest that photosensitive cells produced from different cell lines by direct reprogramming might express different phenotypes.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Fenótipo , Células Fotorreceptoras , Linhagem Celular , Técnicas de Reprogramação Celular/métodos , Derme , Humanos , Células Fotorreceptoras/citologia , Células Fotorreceptoras/fisiologia
9.
Endocrinology ; 153(2): 806-14, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22147011

RESUMO

In rodents, GnRH neurons are diffusely distributed from the medial septum through to the medial preoptic area and control gonadal functions through the pituitary. The activity of GnRH neurons is regulated by a variety of bioactive substances, including the inhibitory peptide somatostatin. In the present study, we focused on somatostatin because intracerebroventricular injection of somatostatin inhibits the LH surge in rats and reduces LH secretion in ewes. Somatostatin also decreases GnRH release from rat hypothalamic slices. In mice, somatostatin is also thought to suppress GnRH neuronal activity through contact on the soma of GnRH neurons. However, similar data are missing in rats. Moreover, rat GnRH neurons receive only a few synaptic inputs. In this study, we assessed the morphological relationship between GnRH and somatostatin neurons. Confocal microscopy on the sections from the medial septum through medial preoptic area revealed about 35 close contacts per rat between the GnRH and somatostatin neuronal fibers in the organum vasculosum of the lamina terminalis region. No contact of somatostatin fibers on the GnRH neuronal somata was observed. Multicell RT-PCR for somatostatin receptor mRNA in rat GnRH neurons was also performed, which revealed moderate expression of somatostatin receptor subtypes 1-5. In addition, patch clamp experiments were carried out in acute slice preparations. Somatostatin suppressed neuronal firing in cells recorded in a cell-attached configuration and also induced whole-cell outward currents in GnRH neurons. These findings suggest that somatostatin directly inhibits the activity of rat GnRH neurons through volume transmission in the organum vasculosum of the lamina terminalis region.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Neurônios/fisiologia , Somatostatina/metabolismo , Somatostatina/farmacologia , Animais , Fenômenos Eletrofisiológicos , Feminino , Hormônio Liberador de Gonadotropina/genética , Masculino , Neurônios/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Tetrodotoxina/farmacologia
10.
J Physiol Sci ; 60(3): 195-204, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20101487

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the neuroendocrine regulation of reproduction. We have previously reported that rat GnRH neurons exhibit voltage-gated Ca(2+) currents. In this study, oligo-cell RT-PCR was carried out to identify subtypes of the alpha(1) subunit of voltage-gated Ca(2+) channels in adult rat GnRH neurons. GnRH neurons expressed mRNAs for all five types of voltage-gated Ca(2+) channels. For T-type Ca(2+) channels, alpha(1H) was dominantly expressed in GnRH neurons. Electrophysiological analysis in acute slice preparations revealed that GnRH neurons from adult rats exhibited T-type Ca(2+) currents with fast inactivation kinetics (~20 ms at -30 mV) and a time constant of recovery from inactivation of ~0.6 s. These results indicate that rat GnRH neurons express subtypes of the alpha(1) subunit for all five types of voltage-gated Ca(2+) channel, and that alpha(1H) was the dominant subtype in T-type Ca(2+) channels.


Assuntos
Cálcio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/fisiologia , RNA Mensageiro/metabolismo , Animais , Cálcio/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Physiol Sci ; 58(5): 317-22, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18834560

RESUMO

Gonadotropin-releasing hormone (GnRH) neurons represent the final output neurons in the central control of reproduction. gamma-Amino butyric acid (GABA), one of the major regulators of GnRH neurons, depolarizes GnRH neurons isolated from adult rats via GABA(A) receptors. The presence of GABA(A) receptors in GnRH neurons has also been demonstrated morphologically. Furthermore, the pineal hormone melatonin is involved in the regulation of reproductive function, including the timing of the luteinizing hormone surge. The suprachiasmatic nucleus and the GABAergic system in the medial preoptic area are considered as possible sites of the action of melatonin. Until now, however, a direct action of melatonin on GnRH neurons has not been reported. Therefore we examined the effect of melatonin on GABA(A) receptor currents in GnRH neurons isolated from GnRH-EGFP transgenic rats by means of perforated patch-clamp experiments. The GABA(A) receptor currents were modulated by melatonin in a sex-specific manner. In GnRH neurons from adult males, melatonin augmented these currents in 67% of the neurons examined, but attenuated the currents in only 19% of them. These modulations were blocked by the melatonin receptor antagonist luzindole, suggesting an involvement of melatonin receptors. The modulation by melatonin was not observed in GnRH neurons isolated from infantile rats. These findings indicate that GABA affects the excitability of GnRH neurons in adult rats through GABA(A) receptors, and that melatonin modifies this excitability via melatonin receptors in a sex-specific manner.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Melatonina/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Caracteres Sexuais , Animais , Bicuculina/farmacologia , Células Cultivadas , Feminino , GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Proteínas de Fluorescência Verde/genética , Masculino , Técnicas de Patch-Clamp , Área Pré-Óptica/citologia , Ratos , Ratos Transgênicos , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA