RESUMO
Genetic variants of the OX40 ligand (OX40L) locus are associated with the risk of systemic lupus erythematosus (SLE), it is unclear how the OX40L blockade delays the lupus phenotype. Therefore, we examined the effects of an anti-OX40L antibody in MRL/Lpr mice. Next, we investigated the effect of anti-OX40L on immunosuppression in keyhole limpet hemocyanin-immunized C57BL/6J mice. In vitro treatment of anti-OX40L in CD4+ T and B220+ B cells was used to explore the role of OX40L in the pathogenesis of SLE. Anti-OX40L alleviated murine lupus nephritis, accompanied by decreased production of anti-dsDNA and proteinuria, as well as lower frequencies of splenic T helper (Th) 1 and T-follicular helper cells (Tfh). In keyhole limpet hemocyanin-immunized mice, decreased levels of immunoglobulins and plasmablasts were observed in the anti-OX40L group. Anti-OX40L reduced the number and area of germinal centers. Compared with the control IgG group, anti-OX40L downregulated CD4+ T-cell differentiation into Th1 and Tfh cells and upregulated CD4+ T-cell differentiation into regulatory T cells in vitro. Furthermore, anti-OX40L inhibited toll-like receptor 7-mediated differentiation of antibody-secreting cells and antibody production through the regulation of the SPIB-BLIMP1-XBP1 axis in B cells. These results suggest that OX40L is a promising therapeutic target for SLE.
Assuntos
Nefrite Lúpica , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Ligante OX40 , Receptores OX40 , Transdução de Sinais , Animais , Camundongos , Nefrite Lúpica/imunologia , Ligante OX40/metabolismo , Transdução de Sinais/imunologia , Receptores OX40/imunologia , Receptores OX40/metabolismo , Receptores OX40/genética , Linfócitos B/imunologia , Feminino , Hemocianinas/imunologia , Modelos Animais de Doenças , Células Th1/imunologia , Anticorpos Antinucleares/imunologia , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
Immune checkpoints (ICs) play a pivotal role in orchestrating immune regulation, crucial for the maintenance of immune tolerance and prevention of autoimmune diseases. One noteworthy example among these immune regulators is T cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT). The TIGIT pathway's inhibition or the absence of TIGIT has been linked to the hyperactivation and excessive proliferation of T cells, rendering individuals more susceptible to autoimmune diseases and exacerbating inflammatory responses. Conversely, the activation of TIGIT has exhibited promising outcomes in ameliorating autoimmune disorders, as observed in murine models of systemic lupus erythematosus (SLE). Consequently, a judicious exploration of the co-inhibitory axis appears warranted for the effective management of pathogenic immune responses in SLE. In light of compelling evidence, this review undertakes a comprehensive examination of TIGIT's characteristics within the context of autoimmunity, offering insights into its potential as a therapeutic target for SLE.
Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Camundongos , Animais , Lúpus Eritematoso Sistêmico/diagnóstico , Receptores Imunológicos , Imunoglobulinas , TirosinaRESUMO
OBJECTIVES: T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is a newly discovered immune checkpoint (IC) that exhibits immunosuppressive function in the regulation of immune system. Activation of TIGIT signaling has emerged as a promising approach for autoimmune disease immunotherapy, such as systemic lupus erythematosus (SLE). METHODS: We generated a chimeric protein, TIGIT-immunoglobulin (Ig), by fusing the extracellular domain of murine TIGIT to the Fc region of mouse IgG2a, which was used to investigated the effect of activating the TIGIT signaling in murine lupus models (MRL/lpr and chronic graft-versus-host disease mice). Treated mice were harvested, and samples of serum, kidney, and spleen were collected for outcome evaluation. In vitro treatment of TIGIT-Ig in B cells was used for exploring the roles of TIGIT in toll-like receptor 7 (TLR7)-mediated B cell differentiation and antibody production. RESULTS: TIGIT-Ig treatment delayed disease progression in both lupus models, accompanied by a decrease in the production of anti-double stranded DNA antibodies (anti-dsDNA), proteinuria, proteinuria/creatinine, and Ig kidney deposition. Additionally, the group treated with TIGIT-Ig displayed a decreased proportion of T helper cell (Th)1 cells, T follicular helper (Tfh) cells, and B-cell subsets, including germinal center B cells (GC B), plasmablasts, and plasma cells, compared to the group treated with control IgG. Interestingly, we also observed an increased proportion of Tregs in the spleen of the TIGIT-Ig group. We have discovered a new way in which activating the TIGIT pathway can regulate B-cell differentiation through the SPI-B-PAX5-XBP1 pathway, resulting in a reduction in autoantibodies. CONCLUSION: Together, TIGIT may be a promising IC target for SLE treatment.
Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Nefrite Lúpica/terapia , Camundongos Endogâmicos MRL lpr , Autoanticorpos , Receptores Imunológicos/genética , Proteinúria , Diferenciação Celular , Modelos Animais de DoençasRESUMO
The transition from meiotic spermatocytes to postmeiotic haploid germ cells constitutes an essential step in spermatogenesis. The epigenomic regulatory mechanisms underlying this transition remain unclear. Here, we find a prominent transcriptomic switch from the late spermatocytes to the early round spermatids during the meiotic-to-postmeiotic transition, which is associated with robust histone acetylation changes across the genome. Among histone deacetylases (HDACs) and acetyltransferases, we find that HDAC3 is selectively expressed in the late meiotic and early haploid stages. Three independent mouse lines with the testis-specific knockout of HDAC3 show infertility and defects in meiotic exit with an arrest at the late stage of meiosis or early stage of round spermatids. Stage-specific RNA-seq and histone acetylation ChIP-seq analyses reveal that HDAC3 represses meiotic/spermatogonial genes and activates postmeiotic haploid gene programs during meiotic exit, with associated histone acetylation alterations. Unexpectedly, abolishing HDAC3 catalytic activity by missense mutations in the nuclear receptor corepressor (NCOR or SMRT) does not cause infertility, despite causing histone hyperacetylation as HDAC3 knockout, demonstrating that HDAC3 enzyme activity is not required for spermatogenesis. Motif analysis of the HDAC3 cistrome in the testes identified SOX30, which has a similar spatiotemporal expression pattern as HDAC3 during spermatogenesis. Depletion of SOX30 in the testes abolishes the genomic recruitment of the HDAC3 to the binding sites. Collectively, these results establish the SOX30/HDAC3 signaling as a key regulator of the transcriptional program in a deacetylase-independent manner during the meiotic-to-postmeiotic transition in spermatogenesis.
Assuntos
Fertilidade/genética , Regulação da Expressão Gênica , Histona Desacetilases/fisiologia , Meiose/genética , Espermatogênese/genética , Ativação Transcricional , Acetilação , Animais , Reprogramação Celular/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição SOX/metabolismo , Espermátides/citologia , Espermátides/metabolismo , Testículo/metabolismoRESUMO
Transcription factors of the Sox protein family contain a DNA-binding HMG box and are key regulators of progenitor cell fate. Here, we report that expression of Sox30 is restricted to meiotic spermatocytes and postmeiotic haploids. Sox30 mutant males are sterile owing to spermiogenic arrest at the early round spermatid stage. Specifically, in the absence of Sox30, proacrosomic vesicles fail to form a single acrosomal organelle, and spermatids arrest at step 2-3. Although most Sox30 mutant spermatocytes progress through meiosis, accumulation of diplotene spermatocytes indicates a delayed or impaired transition from meiotic to postmeiotic stages. Transcriptome analysis of isolated stage-specific spermatogenic cells reveals that Sox30 controls a core postmeiotic gene expression program that initiates as early as the late meiotic cell stage. ChIP-seq analysis shows that Sox30 binds to specific DNA sequences in mouse testes, and its genomic occupancy correlates positively with expression of many postmeiotic genes including Tnp1, Hils1, Ccdc54 and Tsks These results define Sox30 as a crucial transcription factor that controls the transition from a late meiotic to a postmeiotic gene expression program and subsequent round spermatid development.
Assuntos
Regulação da Expressão Gênica/fisiologia , Meiose/fisiologia , Fatores de Transcrição SOX/metabolismo , Espermátides/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Iniciação da Transcrição Genética/fisiologia , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos , Elementos de Resposta/fisiologia , Fatores de Transcrição SOX/genética , Espermátides/citologia , Testículo/citologiaRESUMO
Cysteinyl leukotriene receptor 1 (CYSLTR1) is observed to increase in psoriatic skin lesions. Montelukast, a CYSLTR1 antagonist, effectively treats inflammatory disorders, such as rheumatoid arthritis, multiple sclerosis, and atopic dermatitis. Thus, blocking CYSLTR1 may be a promising strategy for psoriasis immunotherapy. We prepared a montelukast sodium cream and solution and investigated their effects on psoriasis-like skin lesions induced by imiquimod (IMQ). After the treatment, serum, skin, and spleen samples were collected for evaluation. We treated human T helper (Th) 17 cells with montelukast in vitro to study its effect on Th17 differentiation and nuclear factor kappa-B (NF-κB) signaling. We also created a keratinocyte proliferation model induced by M5 cytokines and assessed the influence of montelukast on key psoriasis-related genes. We induced psoriasis in CYSLTR1 knockout (KO) mice using IMQ to explore the role of CYSLTR1 in psoriasis development. Montelukast sodium cream and solution effectively reduced the psoriasis area and severity index (PASI) and alleviated disease symptoms in IMQ-induced mice. Furthermore, reduced infiltration of inflammatory cells (Th1, Th17, and T follicular helper [Tfh] cells), decreased mRNA expression of cytokines in the skin (interleukin [IL]-17/F and IL-23), and lower serum concentrations of various cytokines (IL-2, IL-6, IL-13, and IL-17A/F) were observed. Montelukast cream and solution also decreased spleen size and the proportion of Th17 and Tfh cells, and significantly inhibited NF-κB signaling-related genes after application. Moreover, montelukast inhibited Th17 cell differentiation and suppressed NF-κB signaling in vitro. CYSLTR1 KO mice induced with IMQ showed improvement in PASI scores, serum IL-17A/F levels, and lower Th1 and Th17 cells in the spleen and skin compared to wild-type mice. Montelukast also suppressed the proliferation and inflammatory response of keratinocytes by regulating NF-κB signaling. Collectively, our results strongly indicate that inhibition of CYSLTR1 signaling to target the Th17 response holds significant promise as a therapeutic approach to manage psoriasis.
Assuntos
Acetatos , Ciclopropanos , NF-kappa B , Psoríase , Quinolinas , Sulfetos , Humanos , Animais , Camundongos , Interleucina-17 , Células Th17 , Psoríase/tratamento farmacológico , Diferenciação Celular , CitocinasRESUMO
Immune checkpoints (ICs), also referred to as co-inhibitory receptors (IRs), are essential for regulating immune cell function to maintain tolerance and prevent autoimmunity. IRs, such as programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have been shown to possess immunoregulatory properties that are relevant to various autoimmune diseases and cancers. Tumors are characterized by suppressive microenvironments with elevated levels of IRs on tumor-infiltrating lymphocytes (TILs). Therefore, IR blockade has shown great potential in cancer therapy and has even been approved for clinical use. However, other IRs, including cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), may also represent promising targets for anti-tumor therapy. The increasing importance of IRs in autoimmune diseases has become apparent. In mouse models, TIGIT pathway blockade or TIGIT deficiency has been linked to T cell overactivation and proliferation, exacerbation of inflammation, and increased susceptibility to autoimmune disorders. On the other hand, TIGIT activation has been shown to alleviate autoimmune disorders in murine models. Given these findings, we examine the effects of TIGIT and its potential as a therapeutic target for both autoimmune diseases and cancers. It is clear that TIGIT represents an emerging and exciting target for immunotherapy in these contexts.